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Discussed here are the effects of basics graph transformations on the spectra of associated quantum graphs. In
particular it is shown that under an edge switch the spectrum of the transformed Schrödinger operator is interlaced
with that of the original one. By implication, under edge swap the spectra before and after the transformation,
denoted by {En}∞n=1 and {Ẽn}∞n=1 correspondingly, are level-2 interlaced, so that En−2 ≤ Ẽn ≤ En+2. The proofs
are guided by considerations of the quantum graphs’ discrete analogs.
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1. Statement of the main result

Quantum graphs are linear, network-shaped struc-
tures of vertices connected by edges, with a Schrödinger
like operator suitably defined on functions supported on
the edges. Such systems were studied by Linus Paul-
ing as simplified models of valance electrons in organic
molecules in the 1930s [1]. More recently attention
was called to quantum graphs in the context of quan-
tum chaos [2, 3], and they are defined and discussed at
great length and detail in review articles and books (see
e.g., [4–7]). In this note, we consider a general com-
pact quantum graph, G = (V, E ,L), whose edges e ∈ E
are metrized and of finite lengths belonging to the list
L = {Le}|E|e=1. The associated Schrödinger operators H
act in L2(G) :=

⊕
e∈E L

2(e, dx), may include external
potential V and possibly also a magnetic potential A:

H =

(
1

i

d

dx
−A(x)

)2

+ V (x). (1.1)

The operator definition is incomplete without specifying
also the boundary conditions (bc) at vertices. They are
assumed here to be local, i.e., expressed in terms of lin-
ear relations on the limiting values of the function and
of its derivatives along the deg(v) edges which meet at
each vertex v ∈ V. The possible choices which ensure
self-adjointness are reviewed in detail in, e.g., [5, 6].

Under mild conditions on V and A the spectrum of the
Schrödinger operator {En}∞n=1 is discrete and bounded
below, but not above. It suffices to assume V,A are inte-
grable, but for a more transparent presentation we focus
on the case these are piecewise continuous [6].

This spectrum of H is unaffected by the operation of
edge splitting, through the insertion of a vertex of degree
2 with Kirchhoff boundary conditions. These require Ψ
to be continuous at v ∈ V having there directional deriva-
tives satisfying:∑

e∈Ev

d

dxe
Ψ(v) = 0. (1.2)

(To avoid confusion: these boundary conditions are not
assumed here for the other quantum graph vertices.)

Our purpose here is to discuss the effects on the spec-
trum of another basic graph transformation, that of edge
switching. It is defined in the following extension of a
notion which is used in combinatorial graph theory [8].
Definition 1.1 For a quantum graph G with a self-
adjoint Schrödinger operatorH, an edge switch is a trans-
formation in which a pair of edges in E exchange the
graph designations of one of their end points. Preserved
under this exchange are the edge lengths, the local ac-
tion of H along the corresponding edges, and the vertex
boundary conditions – up to the corresponding transpo-
sition of the functions whose limiting behavior at the two
vertices enter the local boundary conditions.

Under an edge switch the collection of the edge lengths
remains unchanged. However the spectra will in the
generic case be affected. For example, for quantum graph
Laplacians it is shown in [9] that the topology of the
quantum graph with rationally independent edge length
L “can be heard” in the sense of Marc Kac [10]. For clar-
ity let us add that the graph topology may be affected
by a switch, but it does not have to. However, regard-
less of that, and even in case the switch involves two end
points which terminate at a common vertex, the spec-
trum may be affected through the resulting transposition
in the boundary conditions.

Edge switch may be combined with the actions of edge
splitting and its inverse – the removal of a degree 2 ver-
tex of Kirchhoff boundary conditions. The group gen-
erated by these elements includes various other useful
graph modifications under which only the total length∑
e∈E Le is preserved. Among those are:

a. An edge crossing : a transformation in which a
pair of edges e, e′ are cut at points se ∈ (0, Le),
se′ ∈ (0, Le′), and cross-rewired at these cut points,
keeping the action ofH locally unchanged along the
edge segments. The map is done using vertex in-
sertion, with Kirchhoff rules, followed by an edge
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switch at the inserted vertices, and then removal of
the added pair.

b. An egde reversal : a mapping in which the
parametrization of one of the graph edges is re-
versed, i.e., the potentials V and A on e are re-
placed by V (Le − ·) and A(Le − ·), with no other
change, in particular preserving the graph struc-
ture, its edge lengths, and the collection of the
boundary conditions through which H is defined.

c. An edge swap: a transformation in which the
lengths of the two edges and the action of H along
them are exchanged while preserving the graph
structure and the boundary conditions at all ver-
tices.

d. An edge segment exchange: in which a pair of edges
exchange mid segments. The mapping is realizable
through a pair of edge crossings.

It may be noted that the graph topology, which is not
preserved under a generic edge switch, is preserved under
any of the last three operations.

The main result reported here is a statement constrain-
ing the difference between the quantum graph spectra
before and after any of the above operations. We use the
following terminology.
Definition 1.2 Two non-decreasing sequences {En} and
{Ẽn} are said to be degree-r interlaced if for any n > r

En−r ≤ Ẽn ≤ En+r. (1.3)
In case r = 1 the sequences are more simply said to be
interlaced.

The above is a symmetric relation. Eq. (1.3) may be
equivalently expressed by saying that the spectral shift
is uniformly bound by r, i.e., for all E ∈ R
|Ñ(E)−N(E)| ≤ r, (1.4)

where N and Ñ are the counting functions
N(E) = card{n|En ≤ E},
Ñ(E) = card{n|Ẽn ≤ E}. (1.5)
Following is our main result.

Theorem 1.1 Let (G, H) be a quantum graph, which
need not be connected, with a self-adjoint Schrödinger op-
erator of the form (1.1). Then under any edge switch the
spectra before and after the transformation are interlaced
(at degree r = 1).

An immediate consequence is that under each of the
other transformations mentioned above the spectra be-
fore and after the transformation are degree-r interlaced,
with

r =


1 under a single edge crossing,
1 edge reversal,
2 edge swap,
2 partial exchange of edge segments.

(1.6)

Further implications, and related research questions, are
discussed at the end of the article.

Fig. 1. Piece of a discrete version of a quantum graph.
The quantum graph vertices, marked here by circles,
correspond to connected clusters of discrete vertices of
degrees other than 2. Quantum graph edges correspond
to chains of discrete vertices of degree 2.

The notions discussed above can also be considered in
the context of finite discrete graphs, an example of which
is depicted in Fig. 1. The discrete HamiltonianH is given
by a hermitian matrix whose off diagonal terms are of the
form

Hu,v = Ju,v e iθ(u,v), (1.7)
with Ju,v the adjacency matrix of the graph plus an ad-
ditional potential V on the diagonal u = v and θ(u, v) =
−θ(v, u) representing the single step integral of the vec-
tor potential A. The role which for quantum graphs is
played by edges is assumed here by chains of vertices
of deg(v) = 2. The end points of any chain are its ex-
tremal points of degree 2. The discrete analog of the
quantum graph vertices are therefore the connected clus-
ters of points with deg(v) 6= 2.

Using the above as a dictionary, the different notions
of graph transformations have a natural extension to the
discrete graph case, and so does Theorem 1.1.

2. A pair of relevant finite-rank
perturbation principles

It is somewhat instructive to consider first the discrete
version, which is what we shall do. As a preliminary ob-
servation, let us note that for any edge switch S = S∗ the
differenceH−SHS is an operator of rank at most 4. E.g.,
the switch SA,B of the two edges highlighted in Fig. 1,
affect only the matrix elements of H within the 4 dimen-
sional block spanned by the vectors {|A〉, |Ã〉, |B〉, |B̃〉}.

By the following finite-rank perturbations principle
(cf. [11]) any low rank perturbation has only a limited
effect on the spectral counting function

N(E;H) := dim RangePH<E . (2.1)
Lemma 2.1 Let (H,K) be a pair of self adjoint opera-
tors, with H of discrete spectrum which is bounded below
and K of a finite rank. Then for any E ∈ R:
|N(E;H)−N(E;H +K)| ≤ RankK. (2.2)
The quantity ξ(E;H,H ′) := N(E;H) − N(E;H ′) is

often referred to as Krein spectral shift.
This already allows to deduce (initially for the discrete

case) a weaker version of Theorem 1.1, with (1.6) replaced
by 4 times as large spectral shift bounds.
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One can do a bit better using the monotonicity of the
spectral function under positive perturbations, and the
fact that H and SA,BHSA,B agree on the subspace of
functions which vanish at A and B. For that, one may
consider the two families of operators

Hλ := H + λ|A〉〈A|+ λ|B〉〈B|,

H̃λ := SA,BHSA,B + λ|A〉〈A|+ λ|B〉〈B|. (2.3)
The key observation now is that as λ increases from

0 to +∞ the spectral counting functions N(E,Hλ) and
N(E, H̃λ) can only decrease, but by not more than 2,
and for each E <∞

lim
λ→∞

N(E,Hλ) = lim
λ→∞

N(E, H̃λ). (2.4)

This allows to deduce that
|N(E,H)−N(E,SA,BHSA,B)| ≡

|N(E,H0)−N(E, H̃0)| ≤ 2, (2.5)
which is a step closer to our claim.

For the tighter bound which is stated in Theorem 1.1
we shall use the following comparison principle.
Lemma 2.2 For any pair of self adjoint operators H0

and K, with K of finite rank, and T a unitary ma-
trix such that T 2 = 1 (equivalently T ∗ = T ) the spec-
tra of H + K and H + TKT are intertwined to degree
rank(K)/2, i.e. for all E ∈ R
|ξ(E;H0 + TKT,H0 +K)| ≤ 1

2Rank(K). (2.6)

Proof. The relation between the two operators can be
rewritten as

H0 + TKT = (H0 +K) + ∆H, (2.7)
with ∆H := T ∗KT − K. The key observation now is
that

T ∗∆HT = −∆H. (2.8)
Hence, in the spectral decomposition

∆H =

rank(K)∑
j=1

λj |Ψj〉〈Ψj |, (2.9)

the number of strictly positive eigenvalues is at most
rank(K)/2, and so is the number of strictly negative
eigenvalues. (In the present case the two are equal, due
to the antisymmetry, but it is the above property which
matters.)

Therefore adding ∆H is equivalent to the addition, one
at a time, of rank(K) operators of rank 1. In this process,
for each E the spectral counting function N(E) changes
by at most rank(K)/2 steps of +1 and at most rank(B)/2
steps of −1. Thus the net spectral shift is bounded by
rank(K)/2.

3. The discrete graph case

The argument which will be employed for the optimal
uniform spectral shift bound (see Fig. 2) starts from a
split of the graph at the two points A and B, in a manner
indicated in Fig. 3.

Fig. 2. Comparison of the spectral counting functions
for the graph Laplacian on a tetrahedral graph of dif-
ferent edge lengths, under: i) an edge switch and ii)
edge swap. The insets show the corresponding numeri-
cal frequency distributions of the difference ∆N(E) at a
randomly chosen energy (uniformly in

√
E), computed

from 10,000 spectral levels. As is proven in this work,
|∆N | ≤ 1 for any edge switch. Under edge swaps our
bound |∆N | ≤ 2 (r = 2 in (1.6) is attained, but not
very frequently.

Fig. 3. The vertex split A 7→ (A1, A2) which is em-
ployed in the proof of the discrete version of Theo-
rem 1.1. A similar split is made at point B of Fig. 1.

Proof of Theorem 1.1. — the discrete case: Consider the
discrete analogue of the quantum graph which is obtained
by splitting the end points of the edges which are to be
switched, in a manner indicated in Fig. 3. Denoting by
H the original finite-dimensional Hilbert space and by Ĥ
the one corresponding to the enlarged graph. The latter
is isomorphic to the direct sum H

⊕
C2. To the operator

H on H, we associate the operator Ĥ on Ĥ through the
following choices: i) The two operators coincide within
the subspace which does not involve the end points A
and B, ii) The matrix element of Ĥ between |A1〉 and
its neighbor along the edge equals

√
2 times that of H

between A and that neighbor. iii) The matrix element of
Ĥ between |A2〉 and the vertex site is again the product
of
√

2 and the corresponding matrix element of Ĥ. And
finally iv) VA := 〈A1|Ĥ|A1〉 = 〈A2|Ĥ|A2〉 = 〈A|H|A〉.
Similar convention will be applied at the endpoint |B〉
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with which |A〉 is to be switched. Consider now the one
parameter family of operators

Hλ = Ĥ + λ
[
(|A1〉 − |A2〉)(〈A1| − 〈A2|)

+(|B1〉 − |B2〉)(〈B1| − 〈B2|)
]
. (3.1)

Denoting by S = S∗ the operator which transposes
|A2〉 ↔ |B2〉, we find:

S∗HλS −Hλ = λ(|A1〉 − |B1〉)(〈A2| − 〈B2|)

+λ(|A2〉 − |B2〉)(〈A1| − 〈B1|). (3.2)
This difference is rank 2 and antisymmetric with respect
to the transposition S. Lemma 2.2 thus implies that
|ξ(E;Hλ, S

∗HλS)| =

|N(E;Hλ)−N(E;S∗HλS)| ≤ 1. (3.3)
By an orthogonal change of basis in the subspace
{|A1〉, |A2〉, |B1〉, |B2〉} to { 1√

2
(|A1〉 + |A2〉), 1√

2
(|A1〉 −

|A2〉), 1√
2
(|B1〉 + |B2〉), 1√

2
(|B1〉 − |B2〉), one realizes

that Hλ on Ĥ is unitarily equivalent to H ⊕ diag(2λ +
VA, 2λ+ VB) +X on a space equivalent to H⊕ C2 with
X a λ- independent rank-4 operator which is purely off
diagonal in the above dimH × 2 block decomposition of
Ĥ. I.e., denoting by Q the orthogonal projection onto
the C2-component of Ĥ and by P = 1 − Q, one has
PXP = QXQ = 0. Consequently through an applica-
tion of the Schur complement formula, for any E ∈ R:

lim
λ→∞

N(E;Hλ) = N(E;H) (3.4)

and the same applies to S∗HλS. Hence, the spectral shift
under edge switch is bounded by one as claim.

4. Proof of the main result
While Theorem 1.1 addresses the spectral shift caused

by an edge switch, it is convenient to regard this trans-
formation as a limiting case of an edge crossing. More
specifically, let e ≡ [0, Le] and e′ ≡ [0, Le′ ] be a pair of
edges whose end points are to be switched. Splitting the
edges through the insertion of vertices located at a dis-
tance ε > 0 from the corresponding endpoints, with the
Kirchhoff boundary conditions on the inserted vertices
leaves the spectrum of Hamiltonian H invariant. Cross-
ing the edges at the split points results in a new Hamilto-
nian which we denote by Hε. As ε ↓ 0 this Hamiltonian
converges in norm resolvent sense to the Hamiltonian of
the edge switch dealt with in Theorem 1.1. This implies
the convergence of the counting functions N(E;Hε) for
almost all E ∈ R. It therefore suffices to focus in the
proof on the spectral shift under an edge crossing trans-
formation.

Proof of Theorem 1.1. – continuum case, for edge cross-
ing:With Kirchhoff boundary conditions at the above de-
scribed edge insertion sites on the chosen pair of edges,
the insertion in essense leaves the Hamiltonian invari-
ant. More precisely, it causes no change in the spec-
trum. However, changing the boundary conditions there
to Dirichlet one obtains a different Hamiltonian which we

denote by H0. As a tool in the proof we will work with
the spectral shift resulting from this change:

ξ(E;H,H0) = N(E;H)−N(E;H0), (4.1)
where N(H;E) stands for the number of eigenvalues of
H strictly below E.

Let H̃ stand for the Hamiltonian in which the two
edges are crossed at the two inserted vertices. By the
additivity of the spectral shift, the quantity of interest
can therefore be written as

ξ(E;H, H̃) = ξ(E;H,H0)− ξ(E; H̃,H0). (4.2)
Since we assumed the quantum graph to be compact, the
spectral shift functions are piecewise constant with only
countably many discontinuities. It therefore remains to
bound the spectral shift only for almost every E ∈ R.

The resolvents of the original Hamiltonian H and the
Dirichlet-decoupled operator H0 are related by the Krein
formula

(H − z)−1 − (H0 − z)−1 = −γ(z)M(z)−1γ(z∗)∗,(4.3)
which involves the gamma field γ and the Weyl func-
tion M corresponding to this change of boundary con-
ditions [12]. The latter is a 4 × 4 matrix-valued Her-
glotz function z 7→ M(z) of the spectral parameter
z ∈ C+. The Weyl function’s boundary values M(E) :=
limε↓0M(E + iε) exist for almost all E ∈ R. Since the
graph is compact, these boundary values are self-adjoint
M(E)∗ = M(E), We now recall the result of Behrndt-
Malamud-Neidhardt [13, Thm. 4.1] that for almost all
E ∈ R the spectral shift is given by

ξ(E;H,H0) =
1

π
Arg detM(E) = N(0;M(E)), (4.4)

where Arg : C\{0} → (−π, π] is the imaginary part of
the principle value of the complex logarithm. Likewise,
the spectral shift for the edge-crossed Hamiltonian H̃ is
given in terms of its Weyl function M̃(z). The latter is
related toM(z) by a unitary transposition S = S∗ which
swaps two rows/columns,

M̃(z) = SM(z)S. (4.5)
Consequently, for almost every E ∈ R

ξ(E;H, H̃) = N(0;M(E))−N(0;SM(E)S). (4.6)
Since the differenceM(E)−SM(E)S is rank two and an-
tisymmetric with respect to S, Lemma 2.2 applies, and
implies that the spectral shift is bounded by one.

5. Discussion

A few comments are in order.
— A common feature of the transformations consid-

ered here is that they do not affect the asymptotic rate of
growth of the spectrum. This follows from Weyl’s semi-
classical assymptotic formula [14] (see also [15]):

lim
E→∞

1√
E
N(H,E) = lim

E→∞

1√
E

1

2π

∑
e∈E(G)

∫ Le

0

dx

×
∫ ∞
−∞

1[p2 + V (x) ≤ E]dp =
1

π

∑
e∈E(G)

|Le| (5.1)
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and the fact that the sum of edge lengths is preserved
under the transformations considered here.

— Given a quantum graph G and a list L of |E| dis-
tinct lengths there are |E|! different arrangements of the
lengths over the edges. Denote by Q = QL the set of
the corresponding quantum graphs, at zero potential but
with some fixed boundary conditions. This provides an
ensemble of quantum graphs with spectra of the same
mean spectral density and a common structure of peri-
odic orbits. What would be the spectral statistics for this
ensemble? How will it depend on the underlying common
structure?

— For pairs of quantum graphs q, q̃ ∈ Q we can define
the (discrete) distance ∆(q, q̃) as the smallest number of
elementary swaps by which q may be transformed to q̃.
Thus we can define an adjacency relation on Q between
quantum graphs at distance ∆ = 1. This in turn defines a
d-regular "meta-graph"GQ with the |E|! quantum graphs
as vertices, each with the degree d = |E|(|E| − 1)/2. A
random walk on GQ corresponds to a succession of ele-
mentary swaps which are chosen at random with equal
probability at each step. Since GQ is d-regular, the ran-
dom walk is ergodic and covers GQ uniformly after suffi-
ciently long "time". This process is the discrete version
of Dyson’s Brownian motion approach to spectral statis-
tics [16], and it is discussed at length in [17] for a different
class of matrix ensembles.

— A related subject for future research is the sys-
tematic study of correlations between different spectra
and their dependence on the distance ∆(q, q̃) between
the graphs.

— A possible tool for further insights on the spectral
shift, and also an object of intrinsic interest (cf. [18])
is the question how are nodal counts affected by edge
swapping and the other transformations discussed here.

— Length swapping can be easily implemented in ex-
perimental simulations of quantum graphs by networks
of RF wave-guides [19].

Note added in proof:

After the submission of the paper it was called to our
attention that an alternative protocol for the edge switch
can be based on the vertex gluing operation, which was
discussed in [6, Thm. 3.1.10] and in [20, Thm. 1]. Using
it, an edge switch can be obtained through vertex gluing
followed by un-gluing into the modified graph configu-
ration. Each step produces a spectral shift of at most
one, but in different direction. The spectral shift bounds
presented here are not improved by this comment, but
it does offer another useful perspective. We thank Gre-
gory Berkolaiko, Pavel Kurasov and Sergey Naboko for
alerting us to this point of view.
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