
May 2011

EPL, 94 (2011) 30004 www.epljournal.org

doi: 10.1209/0295-5075/94/30004

Partial Weyl law for billiards

A. Bäcker1,3, R. Ketzmerick1,3, S. Löck1 and H. Schanz2,3
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Abstract – For two-dimensional quantum billiards we derive the partial Weyl law, i.e. the average
density of states, for a subset of eigenstates concentrating on an invariant region Γ of phase space.
The leading term is proportional to the area of the billiard times the phase-space fraction of Γ.
The boundary term is proportional to the fraction of the boundary where parallel trajectories
belong to Γ. Our result is numerically confirmed for the mushroom billiard and the generic cosine
billiard, where we count the number of chaotic and regular states, and for the elliptical billiard,
where we consider rotating and oscillating states.
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Waves restricted to finite resonators in two or three
dimensions have found abundant applications in contem-
porary physics. Examples include electromagnetic and
acoustic resonators, microdisk lasers, atomic matter waves
in optical billiards, and quantum dots [1–5]. The average
density of states is an essential observable of a resonator
and dictates many physical properties. Investigations of
this quantity go back to Lord Rayleigh more than a
hundred years ago [6] and have been a continuing topic
of interest ever since [7–14]. Today the fundamental result
for the average density of states

d̄(E) =
A

4π
− L
8π

1√
E
+ . . . (1)

is known as Weyl’s law, as he gave the first proof of the
leading term [7]. Equation (1) is formulated for the case of
a two-dimensional quantum billiard with areaA, boundary
length L, and Dirichlet boundary conditions (in units
�= 2m= 1). Analogous results for three dimensions, other
types of waves and boundary conditions are available [14],
and for open systems a fractal Weyl law was proposed [15].
The first term of eq. (1) depends on the area A of the

billiard only. As for any quantum system it is obtained
by counting the number of Planck cells in the phase
space available at energy E. The second term was already
conjectured by Weyl [8]. It is specific for billiards or
resonators and depends on the length L of the boundary.
As the wave function must vanish on the boundary, a layer
is depleted which has a length L and a width of the order
of the wave length λ∼ 1/

√
E. Semiclassically, the second

term can be interpreted as a contribution from closed
trajectories which are reflected perpendicularly at the
boundary [10,16,17]. Higher-order corrections in eq. (1)
arise, e.g., due to corners and curvature effects [9–14].
Generic billiards, which are studied for electromagnetic,

acoustic, and matter waves [1–4], have a phase space
containing several dynamically separated domains, such
as regular and chaotic regions, see fig. 1(c). The spectrum
consists of sub-spectra with eigenfunctions mainly concen-
trating on one of these invariant regions Γi, according to
the semiclassical eigenfunction hypothesis [18–20]. It is a
fundamental question to know the corresponding partial
average density of states d̄Γi(E) , where d̄(E) =

∑

i d̄Γi(E).
This is essential for studying the spectral statistics [21]
of such sub-spectra. The partial density of states is also
compulsory for the determination of transition rates with
Fermi’s golden rule [22]. Furthermore, it is required when
an external coupling to the system is not uniform in
phase space, e.g., the total internal reflection in optical
resonators [23,24] or tilted leads attached to a quantum
dot [25].
In this paper we derive the partial Weyl law,

d̄Γ(E) =
AΓ
4π
− LΓ
8π

1√
E
, (2)

for a subset of eigenstates corresponding to an invariant
region Γ of phase space, using the Wigner-Weyl transfor-
mation of the Green function. As expected, for the area
AΓ the ratio AΓ/A is the fraction of phase space occu-
pied by Γ, see eq. (14). For the length LΓ we find that the
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Fig. 1: (Color online) (a) Spectral staircase NΓ(E) for regu-
lar and chaotic eigenstates of the desymmetrized mushroom
billiard with R= 1, l= 1, and a= 0.5. We compare numeri-
cal data with the first term (dashed lines) and both terms of
eq. (3) (smooth solid lines). The inset shows the regular and
chaotic parts of the boundary. (b) Same data after subtract-
ing the area term, ΔΓ(E) =NΓ(E)−AΓE/(4π), compared to
the second term of eq. (3) (smooth solid lines) shown over a
larger energy range. Determinig LΓ in eq. (3) from perpen-
dicular instead of parallel trajectories gives an incorrect result
(dotted lines). (c) Phase space at the circular boundary with
regular (lines) and chaotic (dots) regions and illustrations of
trajectories and eigenfunctions.

ratio LΓ/L is the fraction of the billiard boundary where
parallel trajectories belong to Γ, see eq. (15). This is unex-
pected as semiclassically the boundary term in eq. (1)
originates from trajectories perpendicular to the bound-
ary [10,16,17]. We confirm the result eq. (2) numerically
for the mushroom billiard and the generic cosine billiard,
where we predict the number of regular and chaotic states,
and for the elliptical billiard, where we consider rotating
and oscillating states.
Before we derive eq. (2) we exemplify its application

for the desymmetrized mushroom billiard [26] shown in
fig. 1(c). It is characterized by the radius R of the quarter
circular cap, the stem width a, and the stem height l. Clas-
sically one has two distinct phase-space regions visualized
in fig. 1(c). All trajectories which are located only in the
cap of the mushroom are regular, while those entering the
stem are chaotic [26]. For the chaotic region eq. (14) yields
Ach = πR

2/4− [R2 arcsin(a/R)+ a
√
R2− a2]/2 [22]. For

the length Lch we have to consider those parts of the
billiard boundary ∂Ω for which parallel trajectories belong
to the chaotic region (including the marginally stable
bouncing-ball orbits). This is the case for the straight
boundaries, such that Lch = 2R+2l is the length of the
chaotic boundary of the mushroom billiard. Areg and Lreg
follow from Areg =A−Ach and Lreg =L−Lch = πR/2,
respectively. (For the full mushroom billiard one finds
Lreg = πR and Lch = 2R+2l.) In order to verify this

prediction of the partial density of states, eq. (2), we
numerically solve the time-independent Schrödinger equa-
tion, −Δψl(q) =Elψl(q), for the desymmetrized mush-
room billiard with Dirichlet boundary condition (ψl(q) =
0, q∈ ∂Ω), R= 1, l= 1, and a= 0.5. We calculate the first
6024 eigenstates ψl using the improved method of particu-
lar solutions [27]. They can be classified as mainly regular
or mainly chaotic, depending on the phase-space region on
which they concentrate (fig. 1(c)). There are several meth-
ods for this classification which give similar results. Here
we determine the regular fraction wlreg of an eigenstate
ψl of the mushroom by its projection on a basis of the
regular region. For this basis we use the eigenstates ψmnqc
of a quarter circle of radius R= 1 with energy Emn and
angular momentum m>a

√
Emn. These basis states are

given by ψmnqc (r, ϕ) =NmnJm(jmnr)sin(mϕ), where m=
2, 4, . . . is the angular quantum number, n= 1, 2, . . . is the
radial quantum number, Jm is the m-th Bessel function
of the first kind, jmn is the n-th root of Jm, Emn = j

2
mn,

and Nmn =
√

8/π/Jm−1(jmn) is a normalization constant.
The projection of ψl onto these basis states leads to the
regular fraction wlreg =

∑

m,n |〈ψmnqc |ψl〉|2Θ(m− a
√
Emn)

with 0�wlreg � 1. The chaotic fraction is then given by

wlch = 1−wlreg. From wlreg and wlch the densities of the
regular and the chaotic states can be computed, dΓ(E) =
∑

l w
l
Γ δ(E−El). For comparison with numerics we use

the more convenient spectral staircase function NΓ(E) =
∫ E

0
dη dΓ(η). It has a step of size w

l
Γ at eigenenergy El.

From eq. (2) one finds

N̄Γ(E) =
AΓ
4π
E− LΓ

4π

√
E. (3)

Figure 1(a) shows the regular and the chaotic spectral
staircase for the mushroom billiard. We find excellent
agreement with our prediction, eq. (3) (smooth solid
lines). In fig. 1(b) we demonstrate that the boundary
contribution of eq. (3) is in agreement with the difference
of the numerical data and the first term of eq. (3). Using
the semiclassical interpretation of the boundary term
in eq. (1) one would naively expect that LΓ/L is the
fraction of the boundary where perpendicular trajectories
belong to Γ. However, this does not reproduce the data
(dotted lines). The numerical fluctuations arise due to
oscillatory contributions to the density of states which
are not considered here. We have confirmed that under
variation of the width a of the stem of the mushroom the
prediction eq. (3) agrees with numerics.
Now we turn to the derivation of eq. (2). The most

general method to represent quantum states in phase
space is their Wigner distribution. Other options, such as
the Husimi distribution or numerical methods for specific
geometries as in the example above, yield similar results
and can be obtained from averages over the Wigner
distribution. In the semiclassical limit, according to the
semiclassical eigenfunction hypothesis, the weights wlΓ for
an invariant region Γ of non-zero measure are either zero
or one and independent of the projection method.
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Based on the Wigner distribution of an eigenstate ψl,

Wl(q,p) =
1

π2

∫

d2r e2iprψ∗l (q+ r)ψl(q− r), (4)

we define the phase-space–resolved density of states for a
phase-space point (q,p)

dq,p(E) =

∞
∑

l=1

δ(E−El)Wl(q,p). (5)

For an arbitrary region Γ of phase space the density of
states is given by the integral

dΓ(E) =

∫

Γ

d2qd2p dq,p(E). (6)

Using

ImG(x,x′, E) =−π
∞
∑

l=1

ψ∗l (x
′)ψl(x)δ(E−El) (7)

eq. (5) can be rewritten as

dq,p(E) =−
1

π3

∫

d2r e2ipr ImG(q− r,q+ r, E), (8)

where G(x,x′, E) is the energy-dependent Green function.
For billiards it satisfies

(Δ+κ2)G(x,x′, E) = δ(x−x′), x,x′ ∈Ω, (9)

where κ=
√
E. On ∂Ω it satisfies the boundary condition

of the billiard and is zero outside Ω. Close to the boundary
the curvature can be neglected and the Green function of
a half-plane is an appropriate approximation. It is then
given in the upper half-plane by

G(x,x′, E)≈ 1
4i
[H+0 (κ|x−x′|)−H+0 (κ|x− x̂′|)]. (10)

Here H+0 denotes the Hankel function of the first kind and
x̂
′ is the mirror image of x′.
Instead of requiring that the Green function vanishes in

the lower half-plane, it is more appropriate to continue the
Green function antisymmetrically across the boundary,
i.e. eq. (10) is extended to the full plane. In this way the
corresponding Wigner function is adapted to the Dirichlet
boundary condition and yields a more faithful momentum
distribution1. Far from the boundary this modification has
no effect and reduces to the standard definition.
Using polar coordinates for the momentum p= (p, β)

and Cartesian coordinates for the position q= (q‖, q⊥),
measured parallel and perpendicular to the boundary ∂Ω,

1The standard Wigner function maps a plane wave to a sharp
peak in momentum. However, this clear correspondence is lost if
the domain of the wave function is restricted in space, as is the
case in a billiard. For a point close to the boundary the integral in
eq. (4) covers only a small spatial interval and results in a broad
momentum distribution. The boundary adapted Wigner function
avoids this artifact of the restricted domain [28]. For example, in
1D the transform of a sine wave sin(κq) has the expected δ-peaks
at p=±κ. Note, that the standard Wigner function would result in
eq. (12) in a broad distribution of β for points q near the boundary.

we evaluate in eq. (8) the integrals over r and in eq. (6)
the integral over p,

d̄q,β(E) =
1

4π3

∫ ∞

0

dp p

∫

d2r e2ipr

×
[

J0(2κ|r|)−J0
(

2κ
√

r2‖ + q
2
⊥

)]

, (11)

where J0 is the Bessel function of the first kind. For the
r-integration of the first Bessel function we use polar coor-
dinates r= (r, ϕ), where ϕ is the angle with respect to p,
∮

dϕ e2ipr cosϕ = 2πJ0(2pr), and
∫∞

0
dr r J0(2pr)J0(2κr) =

δ(p−κ)/4p. For the r-integration of the second Bessel
function in eq. (11) we use Cartesian coordinates r=
(r‖, r⊥) leading to pr= pr‖cos(β−β‖)+ pr⊥sin(β−β‖),
where β‖(q) is the angle of the tangent to the boundary
at q∈ ∂Ω. Integration over r⊥ gives πδ(sin[β−β‖])/p and
integration over p leads to πδ(r‖)/2. Finally we obtain

d̄q,β(E) =
1

8π2
− 1
8π
δ(sin[β−β‖])J0(2κq⊥). (12)

The δ-function selects trajectories with momentum paral-
lel to the boundary. According to eq. (6) we have

d̄Γ(E) =

∫

Ω

d2q

∫ 2π

0

dβ χΓ(q, β) d̄q,β(E), (13)

where χΓ(q, β) is the characteristic function of the phase-
space region Γ. It is one when the trajectory running at
angle β through the point q belongs to Γ, zero if this
is not the case, and 1/2 on the boundary of Γ. We now
evaluate eq. (13) in the semiclassical limit κ→∞, where
J0(2κq⊥)→ δ(q⊥)/κ. This gives the final result eq. (2)
with

AΓ =

∫

Ω

d2q
1

2π

∫ 2π

0

dβ χΓ(q, β), (14)

LΓ =

∮

∂Ω

ds χΓ(q(s), β‖(s)). (15)

Here, s is the arc length along the boundary, q(s) is
the corresponding point on the boundary, and β‖(s) =
β‖(q(s)) is the angle of the tangent to the boundary at
that point. We thus find that LΓ/L is the fraction of the
billiard boundary where parallel trajectories belong to Γ.
Strictly speaking, χΓ(q(s), β‖(s)) in eq. (15) is obtained
as a limit from trajectories starting at q‖ = s with β→ β‖
and q⊥→ 0. This infinitesimal neighborhood has to be
considered when the parallel trajectory with β = β‖ and
q⊥ = 0 cannot be assigned to one of the regions Γ. Note,
that AΓ is proportional to the volume of Γ, while there is
no such simple relation for LΓ. For the special case where Γ
is the entire phase space we have χΓ ≡ 1 leading to AΓ =A
and LΓ =L, such that eq. (2) reduces to eq. (1).
We now give two explanations for the boundary term in

eq. (2) and its relation to trajectories of Γ that are parallel
to the boundary: i) If Γ is the entire phase space, eqs. (6)
and (8) lead to dq(E) =−ImG(q,q, E)/π. The semiclassi-
cal contributions to this Green function are given by closed
trajectories which start and end at q [1]. According to the
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second term in eq. (10) they have a length 2q⊥ correspond-
ing to a perpendicular reflection at the boundary. This
leads to the term J0(2κq⊥)/(4π), which agrees with the
second term in eq. (12) when integrated over all β. If Γ is a
region in phase space, one needs the phase-space–resolved
density of states dq,p(E). Equation (8) shows that the
direction of the momentum p is not related to the direction
of the trajectories which semiclassically contribute to the
Green function. Evaluating eq. (11) leads to r‖ = 0, such
that still perpendicularly reflected trajectories of length
2q⊥ give the boundary term. However, this contribution
arises only if the direction β of the momentum p is paral-
lel to the boundary. For the other directions the contribu-
tion cancels due to the phase factor exp(2ipr) in eq. (11).
ii) An intuitive explanation of the boundary term can be
given in terms of a plane wave, exp(ip‖q‖)sin(p⊥q⊥), with
Dirichlet boundary condition at q⊥ = 0. Here the sine-term
suppresses waves with p⊥ = 0 and thus reduces the density
of states for these waves, which have a momentum p paral-
lel to the boundary. Semiclassically such waves correspond
to trajectories parallel to the boundary, in agreement with
our result for the boundary term, eq. (15).
We now consider the desymmetrized cosine billiard

in order to demonstrate that the partial Weyl law can
be applied to systems with a generic mixed phase-space
structure. The cosine billiard is characterized by the height
h and length a of the rectangular part as well as the
height hc of the upper cosine boundary, see fig. 2(c).
For the chosen parameters the phase space of the cosine
billiard consists of one large regular region surrounded
by chaotic motion and a four-island resonance chain, see
fig. 2(c), which also shows a magnification of the generic
hierarchical regular-to-chaotic transition region. In order
to apply the partial Weyl law we have to define a region
Γ in phase space and determine the corresponding area
AΓ and length LΓ. According to eq. (3) this gives a
prediction for the number of eigenstates concentrating on
Γ. In principle any invariant region can be used. We choose
the red-shaded region in fig. 2(c), which contains most
of the central regular island. The area AΓ is determined
from eq. (14) by numerical integration. For the length LΓ
we have to consider those parts of the billiard boundary
∂Ω for which parallel trajectories belong to Γ. This
holds for the left vertical boundary of length LΓ = h+hc,
see the inset in fig. 2(a). We stress, that including the
hierarchical region or parts thereof in the definition of Γ
affects AΓ, but not the boundary term LΓ, as the orbits
parallel to the boundary do not belong to the hierarchical
transition region. Numerically we calculate the first 1853
eigenstates of the desymmetrized cosine billiard with h=
0.8, a= 1.3, and hc = 0.24 using the improved method
of particular solutions [27]. For the l-th eigenstate we
integrate its Poincaré-Husimi distribution [29] over the
region corresponding to Γ which gives the weight wlΓ.
These weights determine the spectral staircase function
NΓ(E). We find excellent agreement with our prediction,
eq. (3), see fig. 2(a). In fig. 2(b) we demonstrate that

Fig. 2: (Color online) (a) Spectral staircase NΓ(E) for eigen-
states concentrated in an invariant region Γ of the desym-
metrized cosine billiard with a= 1.3, h= 0.8, and hc = 0.24.
We compare numerical data with the first term (dashed line)
and both terms of eq. (3) (smooth solid line). The inset shows
the part of the boundary corresponding to Γ. (b) Same data
after subtracting the area term, ΔΓ(E) =NΓ(E)−AΓE/(4π),
compared to the second term of eq. (3) (smooth solid line)
shown over a larger energy range. (c) Phase space at the lower
horizontal boundary with invariant region Γ (red shaded),
remaining phase space (gray lines and dots), magnification of
the hierarchical regular-to-chaotic transition region, and illus-
tration of a regular trajectory.

the boundary contribution of eq. (3) is in agreement with
the difference of the numerical data and the first term of
eq. (3), apart from a constant offset due to higher-order
terms neglected in eq. (3).
As an interesting application, where a part of the bound-

ary contributes to two invariant regions of phase space,
we now consider the desymmetrized elliptical billiard [30],
shown in fig. 3(c). It is characterized by the lengths ra
and rb of the two half-axes, with ra > rb, and the focus
f =
√

r2a− r2b . The phase space of the elliptical billiard
consists of two separated regions of rotating and oscillat-
ing motion as visualized in fig. 3(c). The quantum eigen-
states can be classified accordingly as mainly rotating or
oscillating, N̄(E) = N̄rot(E)+ N̄osc(E). Using eq. (3) we
predict the number of rotating and oscillating states up to
energy E. The areas Arot and Aosc are determined from
eq. (14) by numerical integration. For the length Lrot we
have to consider those parts of the billiard boundary ∂Ω
for which parallel trajectories show rotating motion. This
is the case for the elliptical boundary of length L. Trajec-
tories parallel to the horizontal boundary are precisely on
the separatrix between oscillating and rotating motion.
Therefore, integration over δ(sinβ) in eq. (12) gives half
of the contribution for each of the two invariant regions
of phase space and we have Lrot =L+ ra/2. For the oscil-
lating states we have Losc = rb+ ra/2. Note, that for the
full ellipse the complete boundary belongs to the rotating
region, Lrot = 4L and Losc = 0. Numerically we calculate
the first 2568 eigenstates of the desymmetrized elliptical
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Fig. 3: (Color online) (a) Spectral staircase NΓ(E) for rotat-
ing and oscillating eigenstates of the desymmetrized elliptical
billiard with ra = 1 and rb = 0.7. We compare numerical data
with the first term (dashed lines) and both terms of eq. (3)
(smooth solid lines). The inset shows the rotating and oscil-
lating parts of the boundary. (b) Same data after subtracting
the area term, ΔΓ(E) =NΓ(E)−AΓE/(4π), compared to the
second term of eq. (3) (smooth solid lines) shown over a larger
energy range. (c) Phase space at the elliptical boundary rotat-
ing (red lines from left to right) and oscillating (blue lines)
regions and illustrations of trajectories.

billiard with ra = 1.0 and rb = 0.7 using the improved
method of particular solutions [27]. They are character-
ized by the angular and the radial quantum number, m
and n. For each state we calculate the second constant
of motion κmn [30]. If κ

2
mn > f

2 the state is classified as
rotating and for κ2mn < f

2 as oscillating. Figure 3(a) shows
the rotating and the oscillating spectral staircase for the
elliptical billiard. We find excellent agreement with our
prediction, eq. (3) (smooth solid lines). In fig. 3(b) we
demonstrate that the boundary contribution of eq. (3) is
in agreement with the difference of the numerical data and
the first term of eq. (3). We have confirmed that also under
variation of rb the prediction, eq. (3), agrees with numerics
(not shown).
A straightforward generalization of our results to

Neumann boundary conditions is possible by changing
the sign of the second term in eqs. (2), (3), (10), and (12).
As interesting tasks there remains to find the higher-order
terms of d̄Γ(E) due to corners and curvature effects as
well as to generalize our approach to systems with broken
time-reversal symmetry and to three-dimensional cavities.
Also the generalization of the approach to systems with
smooth potentials [31] is an open problem. Finally, it is
now possible to study the spectral fluctuations around
d̄Γ(E) associated with a phase-space region Γ for generic
billiards.
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Vidmar G., Höhmann R., Kuhl U. and Stöckmann
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