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Spectral signatures of chaotic di�usion in systems
with andwithout spatial order
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Abstract

We investigate the two-point correlations in the spectra of extended systems exhibiting chaotic di�usion in the classical
limit, in presence and in absence of spatial order. For periodic systems, we express the spectral two-point correlations in terms
of form factors with the unit-cell index as a discrete spatial argument. For times below the Heisenberg time, they contain the
full space–time dependence of the classical propagator. They approach constant asymptotes via a regime of quantum ballistic
motion. In the opposite regime of strong disorder with localized eigenstates, we derive a semiclassical approximation of the
form factor that spans the entire transition from metallic to isolating behaviour. The regime of weak breaking of periodicity
is accessed from the side of exact order by a perturbation theory for the sets of, without disorder, symmetry-related periodic
orbits. ? 2001 Elsevier Science B.V. All rights reserved.
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Applying quantum chaos to the physics of disor-
dered solids could merely mean to replace static dis-
order by chaotic dynamics, as an alternative model
of randomness. Here, we think of a theory of clas-
sically chaotic motion in extended quantum systems,
simultaneously present with order or disorder in the
potential. On the classical level, this faces us with a
notion that does not apply to either bound or scattering
systems: chaotic (deterministic) di�usion. In quantum
mechanics, the presence or absence of spatial transla-
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tion symmetry determines whether the eigenstates are
extended or localized and thus whether the spectrum
is continuous or discrete. Classical and quantum fea-
tures are relevant on di�erent time scales. A compre-
hensive theory should therefore contain the crossover,
in time, from quasiclassical di�usion to either ballis-
tic, Bloch-tunneling-like motion or to localization.
Our approach is largely based on semiclassical

methods. We attempt, in particular, to under-
stand the signatures of chaotic di�usion in the
two-point correlations of the quantum spectrum. The
application to extended systems requires a re�nement
of the semiclassical tools: In order to relate spectral
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correlations to classical quantities, we reduce double
sums over periodic orbits by means of the diagonal
approximation, based on the distinction between pairs
of identical and of di�erent orbits. This distinction
becomes ambiguous for systems with an exact or
approximate spatial symmetry. We show how to sys-
tematically account for all pairs of symmetry-related,
but non-identical periodic orbits in the spectral statis-
tics. As a surplus, we thus gain a coarse-grained
spatial resolution of the spectral form factor.
Dealing with disordered systems, we need a

relation between spectral statistics and classical
mechanics that also on the classical side, is based
on statistical quantities rather than individual pe-
riodic orbits. We �rst Fourier transform from the
spectral density d(E) to a time-domain quantity,
a(t) = tr[Û (t; 0)] =

∫
dqK(q; t; q; 0). It can be in-

terpreted as an amplitude to return. A semiclassical
approximation is achieved by replacing the quan-
tum propagator K(q′; t; q; 0) with the van-Vleck
propagator. Squaring, we arrive at a return prob-
ability, expressed as a double sum over periodic
orbits. As the crucial steps of our approach, we
neglect the o�-diagonal terms in the sum express-
ing quantum interferences [1], and generalize the
Hannay–Ozorio de Almeida sum rule [2] to establish
a relation between the spectral two-point correlations
and the probability to return for the corresponding
classical dynamics [1,3],

K(�) =
{

�P(�tH) chaotic systems;

P(�tH) integrable systems:

(1)

Here, K(�) = (1=�r)〈|a(�)− �1=�r(�)|2〉 is the spec-
tral form factor, the Fourier transform of the spec-
tral cluster function [3]. P(�tH) is a classical return
probability, normalized so that limt→∞ P(t) = 1. We
employ dimensionless times � and energies r in units
of the Heisenberg time tH = 2�˜〈d〉 and the inverse
mean spectral density 1=〈d〉, respectively. The �nite
total extension �r/1 of the spectrum should be nar-
row on classical scales. It results in a �nite temporal
resolution 1=�r. Presence or absence of time-reversal
symmetry enters via a degeneracy factor, 
= 2 or 1,
respectively.
An immediate application of Eq. (1) is one-

dimensional systems with static disorder [3]. Here,
P(t) is obtained from a solution of the classical dif-
fusion equation with Neumann boundary conditions.

Its asymptotes are

P(t) =
{√

td=2t t.td (free di�usion);
1 t/td (saturation):

(2)

The Thouless (di�usion) time td = L2=�D, with L, the
overall length of the system, and the di�usion constant
D, establishes a classical time scale independent of
tH. The spectral statistics is determined solely by their
ratio, the dimensionless conductance g= tH=td ∼ �=L,
where � is the mean localization length. Inserting Eq.
(2) into Eq. (1), we obtain for the form factor (in the
unitary case) [3],

K(�) =




√
�=2g regime 1;

� regime 2;
1 regime 3:

(3)

In the case of weak disorder, g¿ 1=2, free di�usion
(regime 1) saturates beyond � ≈ 2=g (regime 2). For
strong disorder, g¡ 1=2, di�usion is limited by lo-
calization at � ≈ 2g, regime 2 is never reached. The
quantum long-time asymptote where the discreteness
of the spectrum is resolved and K(�) saturates (regime
3), is approached for �/1 and �/2g in the respective
two limits. It is not obtained from our semiclassical
approach, but connected “by hand” to the short-time
regime by extrapolation to the point of intersection.
Eq. (3) interpolates between the spectral statistics of
the GUE for g/1, the metallic limit, and Poissonian
statistics in the isolating limit g.1.
In spatially periodic systems (we assume a �nite

chain of N unit cells with cyclic boundary conditions),
the presence of a unitary symmetry allows to order the
spectrum according to the associated conserved quan-
tity, the Bloch angle �m = 2�m=N (or quasimomentum
km = ˜�mN=a), a= L=N , m= 0; : : : ; N − 1. Restrict-
ing the spectral statistics to the representation-speci�c
subspectra, however, discards information contained
in the correlations across the Brillouin zone. We
therefore perform, on top of the transformation to the
time domain that results in amplitudes ãm(�), a dis-
crete Fourier transformation from the quasimomentum
to the unit-cell-number space [4]. The correspond-
ing amplitude an(�) = N−1∑N−1

m=0 exp(in�m)ãm(�) =∫
unit cell dqK(q + na; �tH; q; 0) now refers to return-
ing only up to shifts by integer multiples of a, the
vector generating the discrete translation group. The
semiclassical expressions for the representation-
speci�c density [5] carry Bloch factors exp(inj�m)
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as additional, non-classical phases. The integer nj is
the number of times a generalized periodic orbit runs
around the unit cell before returning, i.e., a winding
number. By transforming to the unit-cell-number do-
main, the Bloch factor is converted to a Kronecker
delta that restricts the orbits contributing to an(�) to
those with nj = n. Proceeding along similar lines as
above, we obtain as a generalization of Eq. (1) [6,7],

Kn(�) = 
n�Pn(�tH); (4)

where Pn(t) =
∫
unit cell dqK

cl(q + na; t; q; 0) is the
winding-number distribution. The degeneracy 
n now
takes the value 2 at points of twofold symmetry of
the lattice and 1 else. With the classical propagator
Kcl(q′; t; q; 0), the generalized form factors contain
the full spatio-temporal information on the classical
spreading, coarse grained on the scale of the lat-
tice constant. In the present case, they are given by
Kn(�) = 
n�Ga(mod N )(n; guc�), with Ga(mod p)(x; �) a
normalized Gaussian of period p and width �. The
appropriate scaling parameter here, guc = N 2tH=td, is
a conductance per unit cell, where tH now refers to
the density of bands. If guc/N 2, classical spreading
saturates before tH. The discreteness of the spectrum
is then too coarse to resolve the band structure. Only
for guc.N 2, the “weak-coupling” or “tight-binding”
limit, proper bands are formed, re
ected in the central
form factor K0(�) as a marked peak at �= 1. The case
N = 2 – systems with two identical, weakly coupled
cells – is extreme but has a wide range of applica-
tions [8].
In order to understand the behaviour of the Kn(�)

beyond the unit-cell Heisenberg time, we calculate the
an(�) in an approximation that becomes exact in the
long-time limit [7]. It requires stationarity of phases
2�r�(�)�− (nmodN )� with respect to the Bloch
angle �, where r�(�) are the exact bands. This condi-
tion amounts to a ballistic spreading of wavepackets,
with a velocity ∼ dr�=d�. For guc.N 2, it implies a
decay of K0(�) by a factor N , before the spreading
saturates and the form factors reach their asymptotic
values 
n=N . The peak at �= 1 and n= 0 re
ects the
strong correlation of levels due to the formation of
bands. The theoretical Kn(�) are shown in Fig. 1a and
compared to data for the kicked rotor on a torus [9]
in Fig. 1b.
The de�nition of generalized form factors and pe-

riodic orbits allows us to systematically include pairs

Fig. 1. (a) Space–time dependence of the theoretical prediction
for Kn(�), (b) form factors Kn(�) for the kicked rotor on a torus
at selected values of n, compared to the theory (heavy lines). In
both panels, N = 512 and guc = 200�.

of symmetry-related orbits. It suggests itself to ex-
tend this idea to systems with weakly broken trans-
lational symmetry where periodic orbits can still be
ordered in N -fold quasidegenerate sets, i.e., where
their topology remains intact. We then replace ampli-
tudes by their unperturbed values, and treat the action
shifts �Sj;n = S ′j;n − Sj, of periodic orbit j in unit cell
n, as perturbations. Assuming the �Sj;n to be Gaus-
sian random variables with zero mean and variance
〈(�S)2〉= �2�, � measuring the deviation from sym-
metry, we obtain [10]

Kpert(�; �) = K0(�)
(
N−1 + (1− N−1) e−�

2�
)
: (5)

Eq. (5) describes the decay of the peak in the unper-
turbed form factor due to the gradual disintegration of
the bands with disorder. It �lls the gap between the
weak-disorder limit of Eqs. (3) and (4), but constitutes
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a regime of its own, outside the one-parameter scaling
of the disordered case: In addition to the (static or dy-
namic!) disorder within the unit cell, characterized by
guc, we here have the (static) breaking of symmetry
among the cells, measured by �. Due to its perturba-
tive nature, Eq. (5) does not account for localization.
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