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We study the spectral statistics for extended yet finite quasi-one-dimensional systems, which undergo a
transition from periodicity to disorder. In particular, we compute the spectral two-point form factor, and the
resulting expression depends on the degree of disorder. It interpolates smoothly between the two extreme
limits—the approach to Poissonian statistics in theakly) disordered case, and the universal expressions
derived in T. Dittrich, B. Mehlig, H. Schanz, and U. Smilansky, Chaos Solitons Fra&;ta05(1997; Phys.

Rev. E57, 359(1998; B. D. Simons and B. L. Altshuler, Phys. Rev. Let0, 4063(1993; and N. Taniguchi
and B. L. Altshulerjbid. 71, 4031(1993 for the periodic case. The theoretical results agree very well with the
spectral statistics obtained numerically for chains of chaotic billiards and gregh363-651X99)11005-3

PACS numbds): 05.45~-a, 03.65.Sq

I. INTRODUCTION very sensitively on the degree of disorder, and derive a uni-
versal expression, which interpolates continuously between
The spectrum of an unbounded periodic system is arthe periodic and the disordered yet metallic limits.

ranged incontinuousbands and the corresponding eigen- Scaling theory describes the transition from metallic to
functions areextended(unnormalizableg When sufficient insulating behavior by varying just a single parameter, the
disorder is introduced, the system is Anderson localized—dimensionless conductanceHere, in contrast, we encoun-
the spectrum ipointlikeand the eigenfunctions alecalized ter two independent parameters characterizing the disorder.
(normalizable. The transition from a continuous to a point The role of the conductance is played by the classical diffu-
spectral measure is a drastic effect, which might have beesion constanD thatremains finite even in the case of exact
used to characterize the transition. However, this approach @eriodicity. Disorder, in the sense of a breaking of spatial
of a limited value, since in practice one always deals withsymmetry, will be characterized independently by the devia-
finite systems, where the spectral measure is pointlike both ition of the classical periodic orbits fromd-fold degeneracy
the periodic and in the disordered situations. In finite sys{whereN is the number of unit cel)s The presence of two
tems, the mean spectral density is independent of the degrelisorder parameters reflects that we are here simultaneously
of disorder. Therefore, for finite systems, the effect of disor-dealing with dynamical “disorder” (chao$ and spatial
der on the energy spectrum can be discerned only in thégquenchegldisorder. The transition regime we are consider-
spectral correlationsindeed, this approach to the character-ing is therefore outside the scope of any one-parameter scal-
ization of the Anderson transition in three-dimensional sysding theory.
tems was usefll], and the spectral measures were shown to The study of the spectral fluctuations in the transition
undergo an abrupt change when the critical level of disordefrom periodicity to disorder is relevant for various theoretical
is reached. In the present paper we study the spectral statighd experimental endeavors to characterize the transition to
tics for finite quasi-one-dimension&1D) systems, which localization. On the one hand, it provides a new and very
undergo a transition from periodicity to disordéQ1D dis- sensitive theoretical and computational tool. On the other
ordered systems of finite length can be either “metallic” or hand, it offers the basis for the extension of the microwave
“insulating” depending on whether the localization length is measurements of the Marburg grol®i, who measured the
larger or smaller than the system length. We shall considespectral distribution of a periodic cavity, and are now in the
only the first case, and the strength of the disorder will beprocess of introducing disorder.
restricted accordingly, to the range of values which is some- The spectral form factor is the main object of our discus-
times called weak disorderWe shall focus our attention to sion, and it is defined in the following way. The spectrum is
the spectral two-point form factor, and show that it dependsinfolded by introducing the dimensionless eneegyhrough
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the relationde=(d)(E)dE, where(d)(E) is the mean spec- -—a — (a)
tral density. The corresponding dimensionless timmea-

sures time in units of the Heisenberg time=27#(d). We @§&§@§&§
L

consider a finite spectral interval of lengthe centered at
€., and denote its characteristic function pfe— €;). Since —_
the mean spectral density of the unfolded spectrum is unity,

the number of states in the intervak is N=Ae. This en- O § > ~ @
ergy interval should be sufficiently large so the>1, and M

sufficiently small so that the mean level density and the clas-

sical dynamics do not change much as the energy is scanned (b)
ﬁﬁgi;l I;{s The oscillatory part of the spectral density in this FIG. 1. Periodida) and aperiodi¢b) chains of chaotic billiards.

The chain length is denoted Wy, a is the size of an individual
billiard. ThusN=L/a is the number of units in the chain.

d(e)=x(e—ec)

zq: ole=eq) l}' @ grVr2c for 7<1
K(n=1, ‘ 4
) ) L or r>1.
The Fourier transform of this function is
The factor gt can take the values 1 or 2 depending on
B omier= whether time reversal invariance is respected or violated, and
dc(T)_f e d(e)de c is the conductivity of the chain. The spectral form factor
for periodic systems was recently derived using both field-
@) theoretical methodgs] and the semiclassical approximation
[6]. Since the latter theory is the basis for the approach de-
veloped in the present paper, we shall describe it briefly to

The Fourier transform of the normalized characteristic funcintroduce the concepts and the notations which will be used

tion is denoted bys, (7) and its width isA7~1/Ae. The N the sequel. . o o
form factor is expressed as We consider a chain dfl identical chaotic unit cells of

length a=1, with periodic boundary conditions, such that
1 the full system shows a discrete translation invariatg.
K(7)= —{|do(P)]?)c. (3)  1@]. (Alternatively, we could discuss a disordered ring con-
N figuration which is threaded by an Aharonov-Bohm flux line.
This is the system analyzed [%]). In such a system, the
We use( ). to denote the spectral average, which is takerclassical evolution within a unit cell becomes ergodic after a
over the nonoverlapping energy intervals located about a sehort time, and one can approximate the classical evolution
of €. values. One can also perform the averaging over anyn the entire chain by diffusive evolution. We shall denote
free parameter of the system or over disorder when it ighe diffusion constant b¥p. The time it takes the diffusive
introduced. It can be easily shown that E8). is merely the  evolution to cover the phase-space uniformly is the Thouless
Fourier transform of the spectral two-point correlation den-time.

=§ X(eq—€)e 2= 8, (7).

sity [3]. For a discrete spectrum the normalization in Bj. Due to translation invariance, the quantum spectrum con-
is such that the form factor approaches a constarts =  sists of discretized energy bands whose width depends on the
—oo, wherey is the mean spectral degeneracy. (dimensionless conductivity per unit cell. It is defined as

The expressions for the spectral form factors in the ex<,;=2w#({d,)D/a? where(d,) is the mean level densityer
treme situations of exact periodicity and weak disorder araunit cell. A few examples of typical bands are shown in Fig.
known. In the latter case, when the length of the system doe®. One can see that for lows, the bands are flat and show
not exceed the localization length, and assuming that théttle structure. For high values, the bandwidth is of the order
Heisenberg time is shorter than the Thouless time, the speof the interband spacing, and the bands can hardly be recog-
tral statistics takes the forfa] nized if the discretization is too coarse.

0 025 epg 075 10 025 gog 075

10 025 gpg 075 1

FIG. 2. Typical discretized band spectra of a periodic chain With16 unit cells. The energy levels are shown as a function of the Bloch
phased, for 10 bands in the case ¢ low, (b) intermediate, andc) high conductance.
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If the system under discussion is invariant under an antidue to the Van Hove singularities. Denoting bﬁeﬁ the
unitary symmetry(such as, e.g., time reversahe bands are second derivative of the band function at its extrema, one
symmetric about the center and the edges of the Brillouirgets
zone, and the levels are doubly degenerate2). The re-
flection symmetry and the degeneracies are broken if the K(7)=C((d5ep) 1pr 1, )
symmetry is lifted, and in this casg=1. . )

The quantum spectrum is characterized by two energ;\/\’herec is a numerical con§tant. Itwa; shown[Bj that the
scales, the meaimtraband spacing and the meanterband  values of the constants which appear lnlﬁq.and in Eq.(8)
spacing. The ratio between them is at ldfsthe number of ~are compatible so that the two expressions matcirat/N.
unit cells. We are interested here in the |afgé|m|t, and (|||) 7>1: The time interval is sufficient to resolve the
therefore these energy scales are very well separated. Sinegintlike character of the spectrum. Hence,

(dY=~(d;)N, the spectral correlations which pertain to the _
interbandscale affect the behavior of the form factor in the K(m)=7. ©)
range G<7<1/N. The correlations between levels in the

same band leave their mark &(7) in the domain <7 in5(6) (8), and(9) make the transition to the Poisson form
<1. The fact that the spectrum is composed of diSAi08-  5.tor K (7)=1 as disorder is introduced. The semiclassical

sibly degeneradeenergy levels is expressed in the SpeCtral(diagona] approximation will be the starting point for the

form factor in the domain &7, where the form factor ap-  giscussion of the transition in the first domain. This will be
proaches the constant valge done in Sec. II. To investigatk(7) in the second and the

We used different approximations to express the form facspirg domains, it suffices to study a system which has a
tor in the three domains mentioned ab¢éé _ _single band in the periodic limit. The-site periodic Ander-

(i) 0<7<1/N. Here one starts from the semiclassicalgqn model is such a system, and it will be discussed in Sec.
trace formula[7] and employs the “diagonal approxima- i The important observation made in this section is that the
tion” [8] to write transition is well described by considering the disorder per-

turbatively. The resulting explicit formulas fd¢(7) in the
K(7)~grN7P(7). ) transition regime reproduce the numerical data extremely
) . . well. The perturbative treatment also sheds light on the pe-

The factorN is due to the discrete translation symmetry, ¢jjiar mechanism which reduces the valu&df) from y to
because of which any generic periodic orbit is replicated 1 iy the third domain when the disorder splits up the degen-
times in the systemgy stands for the classical degeneracy gracies of the spectrum. We shall compare the results ob-
due to time-reversdbr any other antiunitafysymmetry and  (ained separately for the three domains with numerical data

it can take the values 1 or B(t) is the classical probability g, pilliard and graph(networK systems. This will be done

to stay in the same unit cell from which the trajectory started;n sec. |V, where we shall summarize and discuss our find-
after the timet=rt, [4]. Because phase space is coveredpgyg,

diffusively, P(t)~(1/27Dt)¥? and hence

In the following sections we shall study how the expres-

Il. INTRODUCING DISORDER—THE SEMICLASSICAL

K(m)~grNVN7/2c, (6) APPROXIMATION
where ¢, is the dimensionless conductivity per unit cell We shall compute the spectral form fact@y in terms of
which was introduced above. the Fourier transform of the oscillatory part of the spectral

(i) /N<7<1. As 7 increases, the form factor provides density. Using Gutzwiller's trace formulal(r) can be ex-
information on a finer energy scale. In the vicinity of Pressed semiclassically as a sum over the periodic grbits
=1/N, the energy levels within a single band cannot be rethe system
solved, henc& (7= 1/N) takes a value which is proportional
to the apparent degenera®y Finer details of the energy d(r)=2, Sy(7— 7)) 7A€' (10)
correlation inside the band are manifested for larger values i
of 7. To understand the behavior of the spectral form factor,

one writes the levels in the banglasex(q), q=1,... N, with primitive pgriod T A, .(_jenotes.the weight of the
and substitutes in Eq3). Neglecting the cross-band correla- OrPit corresponding to its stability and includes the Maslov
tions one gets phases; is the action of the orbit in units df. Following the
standard approximation, we neglect the contribution of rep-
1| N 2 etitions of primitive orbits to the surfl0). The form factor is
K(r)= <N > e izmegla)r > (7)  how given by a double sum over periodic orbits
q=1 8

1

— —r A* ai(sj—sjr)
This is the spectral form factor for a band, averaged over all K(®) A6<J-ij Oar( 7= 1) Oar T T ) AA €T AT )
the bands. Thg summation can be performed by the saddle- (11
point (or the uniform approximation. The main contribution
comes from the vicinity of the band extrema which corre-It is well known [8] that for short timer this sum can be
spond to the energy values where the spectral density is simestricted to the diagonal ternjis=j'. However, when due to
gular. That is, the prominent features in the form factor area symmetry, the orbit appears @; differentbut symmetry-
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related versions, and the contribution of all the symmetry-of the same order, but they cannot be neglected because they
conjugated orbits must be added coherently. In such caseate measured in units of and, therefore, the resulting
Eq. (11) reduces within the diagonal approximation to changes in phasds; ;, should be taken into account.
Comparing Eqs(12) and(14) we see that Eq.13) repre-
sents the form factor also in the case of a weakly broken

K(7) ; 9i0a 7= ) Tl Al (12) spatial symmetry, ifj is replaced by an effective degeneracy

- ! 3 - r g 2 ei(Asr'j—ASr,jr)
onal approximation is valid up te=1/N, the Heisenberg £
time of the unit cell3]. =1

From very general arguments it is clear that in a system g
whose phase space decomposes into several equivalent sub- )
spaces related bgunitary as well as antiunitajysymmetry, N
the mean degeneragyis just the number of such subspaces.
Thus, if time-reversal invariance is the only symmetrywhich depends on the timesince the average on the right-
obeyed, phase space points with opposite momenta ateand side is over all groups of periodic orbitsvith length
equivalent and consequently phase-space is partitioned ifj~r. The dimensionless parametérhas been introduced
gr=2 subspaces. In our problem, phase space is invariamb characterize the strength of the symmetry-breaking disor-
under a symmetry group containibbelements and therefore der in a way to be specified in E¢L6) below.

In the case of an extended, nearly periodic system, the diag- (r.5)= gT< N >
r

i#j’

N+< > ei<ASr,rASr,r>> ) (15

g=Ngr. Using the sum rule for periodic orbi{®,4], the In order to evaluate Eq15), we need some information
form factor is finally written as about the distribution of the disorder contributions to the
phases of the periodic orbitss, ;. We assume that the cor-
K(7)~grN7P(7), (13 relation length of the disorder is negligibly small compared

) ) ) o to the mean length of an orbit. In this cads, j is a sum of
which we introduced in Eq(5). The normalization of the many independent contributions, and the number of these
staying probabilityP(7) is such thatP(7)=Q/w(7) at @  contributions is proportional to the period of the orbit
time 7, where the classical flow covers ergodically the partjence, according to the central limit theorelys, ; are in-

w(7) of the total energy-shell volum@. In particular,P(7  gependent Gaussian random variables with mean value
—x)=1 for an ergodic system anl(7)=N in a system (As)=0 and variance

which is composed oN unconnected ergodic cells. A more

precise definition can be found [#,10,3. For the present (A%s)= 67, (16)
purpose, we need only the following propef8): the return

probability for a system composed of chaotic unit cells iswhere the average is over all orbits of periedwith these
independenbf the presence or absence of long-range spatiahssumptions we find, from E@15),

order. Thus, within the diagonal approximation, the only ef-

fect of the introduction of disorder is the destruction of the o7 Ak (2

coherence between the contributions of orbits which were g(r, 5)_W(N+N(N_1)|<e )

related by symmetry in the original periodic system. This

implies that in the diagonal approximation €K 7) [see Eq. =gr(1+[N—-1]e” 527)_ (17

(13)], g=Ngy is to be replaced bg=gr.

In order to describe the transition frogm=Ng; to g In the first line we have used the fact that the-1 together
=g as the spatial symmetry is broken, we go slightly be-with the statistical independence &6, ; andAs; ;. justified
yond the diagonal approximatida?) in that we retain in Eq. above to replace the sum ovigj' by its averaged value. In
(11 the off-diagonal contributions from all those orbits the second line, the Gaussian distribution X was em-
which are degenerate in the symmetric system, ployed to give(e‘AS>:e*<A25>’2. It is easy to see that Eq.

N ) (15) indeed interpolates betwean=Ngr andg=g; as a
S eilas mas ) function of the disorder. Note that the parameter which char-
' T acterizes the disorde?, is multiplied by the timer over
(14) which the disorder acts. Hence, the classification of the dis-
order as “weak” or “strong” depends on the relevant time

r runs now over all groups of symmetry-related orbits, whilescale.
j,j’ label theN orbits within each group. Possible degenera- In summary, we get
cies due to time reversal are not affected by breaking the

K<r>~gTZ S 7= 1) 7| A |2
jj'=1

spatial symmetry and are thus contained in the prefagtor K(7,8)=gr(1+[N—1]e"*")7P(7)

The disorder which breaks the symmetry has been assumed _ s

weak enough such th&k) the orbits within the Heisenberg =gr(1+[N—-1Je ") yN7/2c,; 7<1IN.
time of the unit cellr,<1/N are structurally stable, i.e., no (18)

(shorh periodic orbits appear or disappear due to the disor-

der, and(ii) the disorder does not alter by much the stability This expression provides the smooth transition from the pe-
amplitudes and the periods within a grougso thatin the  riodic case, via the weakly disordered to the “metallic” do-
prefactor A ;~A,, 7, j~7,. The variation of the actions are main. In Sec. IV we shall show that this simple formula
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reproduces the form factor in the transition from periodicity els can be unfolded with the constant density. Since we con-
to disorder very well. We emphasize once again that thesider here only weak disorder, the mean level density is
present theory does not describe strongly disordered systerteken as

where the localization length is shorter than the system size.

Such systems are outside of the scope of the present ap- (d)~N/4. (22)

proach, which is based on the “diagonal” approximation. The spectral form factor was defined in E@). In the

periodic case the energies are given by 4). The spectral
I1l. INTRODUCING DISORDER —-PERTURBATION form factor is

OF A MODEL WITH A SINGLE BAND
N—-1 2
As explained in the Introduction, the form factor in the K(no=0)=5 ZO exp—imEQIN/2)| . (23
domain 7>1/N is sensitive to the correlations among the a

levels which belong to the same band. Therefore, in order te second argument of the form factor denotes the strength

study a model with a single band, which is what we do in thegypressior(23) can be rewritten by expanding the exponen-
present section. In order to use the results of this section ifjg| into a Bessel series:

the general context, we have to remember that the form fac-

tor in realistic systems is obtained as an average over many _ 21 - .

bands[see Eq(7)]. This will smooth out several features of giN T o3 =) — > ikela@aNkg (N 7). (24)

the single-band form factor, as will be explained in the se- k=-w

quel. ; ; ;
The system we consider is a chainNtinit cells of length Exchanging the order of the summation ogeandk yields

a=1, with periodic boundary conditions at the end of the o 2

chain. The chaotic scattering process in each cell is repre- K(7,0)=N[Jo(meN)+2>, i™I N(7m7N)| . (25)

n=1

sented by a random potential and the dynamics is discretized
on a lattice. Choosing convenient units, the Sdimger

equation reads The functionK(7,0), which is shown in Fig. 3, displays dif-

ferent features in the three domains ©fIn the domain 0
—(brsr—2do+ b 1)+ Vb =Edb., N <7<1/N the first term in Eq.(25 is dominant and
(19 Jo(m7N)~1. Hence, the form factor assumes the constant
value N, and does not show any structure at all because we
where ¢, is the wave function on thath site. The on-site are dealing with a model with a single band. At 1/N, the
potentialsV,, are uncorrelated random variables which areform factor is a highly irregular function. It fluctuates more
picked out from the same Gaussian distribution function withrapidly with an increasing number of sitéé However, in

varianceo. They obey order to compare the present theory with results which are
derived for realistic systems, one should remember that in
(Va)=0, (VoVm)=6mmo?, n,m=0, ... N—1. the latter case, the form factor is averaged over many bands

(200  which differ in their widths and structure. Such averaging
can be effectively achieved by smoothitg 7,0) over a
The complexity of the scattering process is incorporated bygmall  window.
neglecting the correlations between the potentials on differ- The smoothed form factofK (7,0)), is shown in Fig. 3.

ent sites. o . In the range M<7<1/w, Eq. (25) is dominated by the
_In the periodic limit (-=0), the levels are arranged in a Bessel function with zero index. The average behavior for
discrete band largeN and r<<1/7 can be approximated as
Eg=2[1-cog27a/N)], q=0,...N-1. (2D , 1
<K(T’O)>7%N<|‘]O(7TTN)| >'r%—2v (26)

The level densityfcompare Eq(1)] T

N—1 where we used the asymptotic form of the Bessel function

d(E)= X A(E-Ey) 5
= J,(2)~ \/5 cod z— varl2— wl4)

exhibits van Hove singularities at the band edges0 and

E=4. This is a direct consequence of the periodicity of theand the averagécos),=1/2.

system. In the third domain;> 1/, the window-averaged func-
For o#0 the singularity is smoothed out and for large tion (K(7,0)), converges to a constant value. This constant

values ofo the level density becomes uniform between theis y, the average degeneracy of the levels, and it approxi-

upper and lower ends of the spectrum. This is the typicamately equals 2 since most levels are doubly degenézate

behavior we expect in generic one-dimensional disorderedeptEy=0 and alscEy,,=4 if N is even. In this range ofr

systems. From here on we consider the periodic case as thalues, all Bessel functions contribute. Resumming the

limit of the disordered system when— 0. Accordingly, lev-  asymptotic forms of the Bessel functions, we get
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10 ' T ' omecs ~Ey for =0 (and q=N/2 if N iseven.
: smoothed  + (30
theory -

Here we ignored @-independent constant, since it does not
affect the form factor. The main effect of the perturbation is
that it breaks the degeneracy of the energy levels which are
symmetrically placed about the center of the band. The
change of the mean level spacing is small, and can be ne-
glected to leading order.

Substituting the perturbed energy levels into E28) and
‘e : leaving out the unimportarg=0 (andq=N/2 if N is even
6 | s C levels, we have

(N—=1)/2

K(T’U)%N qu 9~ MEJINI2

« 1
CO E mT

The disorder averaging can be performed analytically, as de-
scribed in the Appendix. For large it leads to

K(1,0)

N—-1 2

EO Vnei2(27T/N)qr'I (31)
n—

K(7,0)=1+A(2a)+A%(a)[K(7,0—2], (32

where the universal functioA(«) is defined in the Appen-
dix. A new combination of the variables involving the disor-
der strength shows up in this expression,

WTU\/N

2

(33

a=

FIG. 3. The form factofsee Eq(23)] for the unperturbed sys- governing the properties of the transition from the periodic to
tem with lengthN=64 (dot9, the corresponding smoothed data the disordered case. For largevalues the form factor con-
(points, and the approximation equatiof®6) and(27) (lines). For  verges to 1, since the perturbation breaks the degeneracy of
<1/, the first term in the Bessel function expansion dominatesthe levels of the periodic system. Please note that—as in the
the form factor. After averaged over7N in 7, the smoothed data semiclassical result E17)—the deviation from the peri-
fit to the theoretical functiori26). For 7> 1/, the smoothed form  odic form factor is governed by a dimensionless parameter
factor converges tg~2. Here the average is taken over a window containing the product of disorder strength and time.
of 1/ in 7. ApproximatingK (7,0) by its averagé26) yields

(K(7,0)),~2. 27 (1—e )2+e /727 for 7<llm

KN~ 14 A2a) for >1/.

We conclude from this discussion that the one-band (34)

model, after proper averaging, reproduces the expected fea-
tures ofK(7,0) in the relevant range> 1/N. The 7<1/7 part describes how the band structure is de-

|ntroducing disorder, the form factor is given by stroyed while ther> 1/ part describes how the double de-
generacy of the levels is resolvésee Fig. 4.

1 /[Nt We can interpret the result for>1/7 in terms of the
K(T’U):N< > exp( —i7EqTN/2) 2> , (28  distributionp,(s) of splittings of levelss=Ej—E?, which
q=0 - are degenerate in the periodic case. For largdhe form

factor is the Fourier transform of this distribution:
where( ), represents the average over the disorder Bjd .
are the eigenenergies of Ed.9) with o<<1. K(7,0)= 1+J' ds p,(s)cogsrmN/2). (35)
In the case of weak disorder, we can use degenerate per- 0
turbation theory to calculate how doubly degenerate energ

levels are split. In first order the eigenenergies are given bySing the derived expressidi10) for A(«), we can con-

clude that the splitting distribution has the form

P(S) = dpw(sd), (36)

o 0 4 1
Erq~Eiqty

N—1
2
> Vnexp(i|2an)
=0
" where pW(s)=7rse‘”52/4/2 is the Wigner surmise and
for q#0, N/2, (29 =0 Nis the mean splitting of levels. The Wigner surmise is
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3 T T T T T T T T T - a —

theoretical —
numerics © Yy

N

K(z,0)

X

FIG. 5. Unit cell of the chain of chaotic billiards.

the disorder. The correlations in the quantum spectrum, how-
ever, crucially depend on whether the system is periodic or
not, as discussed above.
0 5 10 15 20 25 30 35 40 45 50 In this section we present numerical results for the form
K factor K(7) in weakly disordered chains. The case of peri-
FIG. 4. Comparison between the form factor averaged for 100®diC chains was analyzed in detail in two previous publica-
samples ¢=0.008,N=32) and our perturbative expression. Both tions[6]. Here we focus on the crossover from the periodic
of them are smoothed over a 0.5 windowsinPoints are from the case to the weakly disorderémetallic) case, which is pre-
numerical calculation; the solid line is the perturbative formula ofdicted to follow Eq.(18) as a function of the disorder param-
Eg. (32. eter 8. Due to time-reversal invariance of the billiard chain,
gr=2.
known to be the exact distribution of the difference of the We have considered a chain composed of unit cells as
two eigenvalues of a 22 GOE random matrices. We can shown schematically in Fig. 5. The sizes of the half disks
conclude that in the present case, the ensemble ok@ 2 were chosen so that the contribution of direct trajectories to
matrix describing the splitting of levels in the first-order de-the conductance is minimized. Disorder was introduced by
generate perturbation theory reproduces the spacing distribghifting the disks at random to the right or to the left by a
tion of the corresponding GOE with mean level spacihg ~ small amountAx. The dimensionless varian¢éAx)?) is a
To check the applicability of the leading-order perturba-measure of the disorder strength.
tion theory, we computed the form factor numerically and Consider a periodic orbif which hits M disks, m
compared with the analytical result. The parameter range=1, ... M. Its actions; (measured in units of) is affected
waso=0.002,...,0.256 andN=32, ... 256. The numeri- by the M shifts Ax,, and changes by an amouas; . It is
cal results have been averaged for 1000 different disordgplausible thal(AZSj>0<<(kAX)2>7' and thus
realizations. In Fig. 4 we compare formu(82) and the 5 )
simulations. We have found surprisingly good agreement in 5°=Cy((kAX)%). (37)
the whole range of. The fact thaK(7) displays a minimum
where its value is less than 1, and that it approaches 1 agye have used Eq37) to estimate the quantity?® in Eq.
ymptotically from below is a direct consequence of the (18). The constant of proportionalit, in Eq. (37) remains
Wigner distribution of level splittings. In the next section we yndetermined; it depends on the geometry of the system and
shall show that this formula applies very well also in the casgyn k.
of a multibanded spectrum, indicating that the splitting dis- e have performed quantum-mechanical calculations for
tribution fO||0WS the Wigner diStl’ibutiOl’] in more Compli— Systems Composed N: 16 unit Ce”S, W|th disorder param-

cated situations, too. eters covering the domain of applicability of E@.8). The
quantum-mechanical wave functions satisfy the Helmholtz
IV. COMPARISON WITH NUMERICAL RESULTS equation augmented with Dirichlet boundary conditions on
AND DISCUSSION the channel walls and periodic boundary conditions along the

chain. The quantum spectrum of this system can be deter-
mined using the method described [iB]. In this way we
The first class of systems which were investigated nuhave obtained the quantum spectra for several realizations of
merically are chains of chaotic billiardsee Fig. 1, which  disorder, as well as for the periodic chain.
can be arranged in a periodi€ig. 1(a)] or a disorderedlFig. Figure 6 summarizes the results of our numerical calcula-
1(b)] fashion. We denote the size of an individual billiard tions. It showsK(r,8) as a function ofr, in the periodic
(i.e., the unit cell in the periodic casby a and the chain case, for weakly broken periodicitffour different disorder
length byL (andN=L/a>1). In the following we discuss strengthg and for weak disorder. The conductivity per unit
weakly disordered chains and assume that the conductancell is independent of the disorder, and its numerical value
of the chainc=N"1c,;=1. On time scales larger than the was determined from a simulation of the classical dynamics
classical ergodic time for a single cell, the classical dynamic®f the system. A fit to the diffusion propagator at times larger
in the chain of billiards is diffusive, characterized by the than the ergodicity time allows one to determiBefrom
diffusion constantD. In the diffusive regime, the classical whichc,;=33 emerges. The calculations were conducted for
dynamics of the system, and hence the diffusion constangix values of the disorder strengtis’=(k?(Ax)?)=0.0,
are, to a good approximation, independent of the strength .87x 104, 9.55<10 %, 1.49x10 3, 2.56x10 3, and

A. A chain of chaotic billiards
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0.5

K(T)
K(®) /N

0 0.5 1 1.5
N~

FIG. 7. The form factor for a quantum graph consistingh\of
=8 unit cells with 2< 4 vertices each. The unit cell is shown in the
FIG. 6. K(7) for chains of chaotic billiards and different inset with each dot corresponding to a vertex. The form factors
strengths of disorder. were computed using the lowest 10 000 bands. Each spectral win-
dow in Eq.(40) contained 30 bands. The disorder strengths were
4.38<10 2. In all cases, we have calculatér) from 1500  (top to bottom A=0, 0.02, 0.05, 0.1, 0.5. The smooth curve rep-
eigenvalues, in the domain d&f values which supports 28 resents the theoretical prediction without disorder.
open transverse channels. ) .
The semiclassical theory for the periodic case reproduce@imensional system, and therefore the méaave number
the numerical results uniformly well over the three ranges offPectral density is constant, proportional to the total length of
7 values. The semiclassical theory matches very well thdh€ graph. _ _
numerical results for the disordered systems in the domain The graph representing one unit cell was chosen to be the
7<1/N. However, the numerical results in the domail1/ cylindrical” network shown in the inset of Fig. 7. The

<r<1 are not sufficiently smooth to allow a meaningful CYlinder consists here af,=2 layers withn,=4 vertices
comparison with the theory developed in Sec. Il In this €ach. The unit cell was constructed from more than one layer

domain, the spectrum is afflicted by frequent near-" order to remove any resid'ual symmetry. Two bonds lead
degeneracies which make the calculation rather costly iffom €ach vertex to the neighboring layers, two more to
terms of computer resources. This problem is circumvente§ther vertices in the same layer. Hence we have for the unit
in the periodic case, where the translational invariance i€8!l V=nxny andB=2n,n,. The lengths of all bonds are
used to facilitate the calculations. For larger values of thdandom, but the total length of the graph was fixed gt
disorder, the degeneracy disappears, but the effect we are27 such that the mean length of a bond Is
interested in disappears, too. In the next subsection we dis= m(2Nn,n,) ~* and the mean level spacing with respect to
cuss a different model exhibiting a transition from periodic-the wave numbek is unity. For this reason it is natural to
ity to weak disorder, where a quantitative comparison in theise, instead of energy and time, the wave nunkband the
transition regime is possible. length | as conjugate variables, since then no unfolding is
necessary. In complete analogy to E8), we introduce the
spectral form factor via the length spectrum of the oscillating
i ) ) i spectral densitﬁ(k)=2q5(k—kq)—1 using a rectangular
In this section we investigate a second model system—yindow

guantized graphs which were recently shown to provide an

B. A chain of quantum graphs

excellent example for a quantum chaotic systeli]. The 1

graphs are defined by=1,...V vertices ancb=1,... B K(r)= H<|d(7)|2>a (39)

bonds with lengthd , connecting them. The wave function

on a graph is a B-component  function Kt AK/2

[1(X), - . . e(Xg)]". Each component satisfies the Schro d(r)= fk v dk’ e 27K7g (k). (40)
- 2

dinger equationff=2m=1)
d2
— +k?
dxg

7=I1/27 is simply given by the path lengthmeasured in

Up(Xp) =0. (38 units of the Heisenberg lengthy=27.
The classical analog for the quantum graph is the random

walk of a particle moving freely along the bonds and scat-
At the vertices, the wave function must satisfy boundarytering at the vertices according to the quantum transition
conditions which impose continuity and current conserva{robabilities[11]. In the graphs we consider here, exactly
tion. They guarantee that the Sctimger operator is self- four bonds are attached to each of the vertices. In this case
adjoint, and its spectrum consists of discrete points. Implethe transition probability is 1/4 for all bonds, and the
menting the boundary conditions, one derives a secularyapunov exponent is In4 when time is scaled with the
equation which provides a convenient means to compute the@ean time between successive vertex traversals. The coarse-
spectrum numerically. The graph is essentially a onegrained classical evolution is diffusiv(enfv)=Dnn=D|l,
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wheren,, is the distance along the chain measured in unit ' ' ' '
cells(i.e., n,, is the winding number in the periodic caskis . BSEEE0
the length of a trajectory, and=1/L. When allowance is
made for the fact that only half of the traversed bonds con- 5
tribute to the diffusive transport, the diffusion constant is ~—
easily found from the analogy to a random walk on a 1D
lattice with discrete timeD,=1/2n, D;=Nn,/mn,. : 0.01 }
The return probability entering Eq13) decays as *?
until it saturates at 1 when the diffusion covers the whole
chain ergodically. The number of unit ceNs=8 was chosen 0.001 |
such that this saturation occurs beyond the Heisenberg time
of the unit cell 7{y9=1/N and is thus not relevant for the
form factor. In this case the return probability is explicitly N1
given by

0.1

FIG. 8. Reduction of the form factor due to disorder for various
values of the disorder strength=0.01, 0.02, 0.05, 0.1, 0.2, 0.5
(U< < 1N). (1) (bottom to top compared to the prediction of E(L7).

N
(Ter =
27\D|7 _ o )
sum of n(7)/m(7) independent contributions, each with a
Usingg=2N for the mean degeneracy of periodic orbits, we variancem (7)A<. Hence we find for the variance of the

P(7r)=

finally obtain for the form factor sum
- (A%s)=n(7)m(7)AZ. (45)
K(r)=Ny/— (N7<1), (42) , _
Ny In order to obtain an estimate fan(r), we assume that a

typical orbit covers ergodically some region of the phase
which is shown in Fig. 7 with a smooth solid curve and hasspace such that each bond is traversed twice on the average
to be compared to the data obtained numerically withoufwith momentum=+1) and hencem=2. This is the case,
disorder (upper fluctuating curye Beyond N7=1 the e.g., at the Heisenberg time for an isolated unit cell, and—
smooth curve shows the decay of the form factor as 1/ lacking a satisfying theory fam(7)—we have no choice but
Although the quantitative agreement is not perfect, theo generalize this special case. Comparing @&) with Eq.
theory reproduces the essential features of the form facto(16), we find for the disorder strength?= 8Nn,n, A2. This
and in particular the peak at the Heisenberg time is correctlys the parameter which we have chosen in Fig. 8 in order to

predlcted_ _ _ compare the numerical data from Fig. 7 with the result of
The disorder was introduced by small changes in thesec. II. In order to better distinguish the curves for smgll
lengths of all bonds we plot the quantity + K 4(7)/Kq(7) which is, according to
2
Egs.(13) and(17), given by N—1)/N(1—e~?"") and find
A
'—E) ):LEO)JFALb’ (43 indeed a reasonable agreement between the theory and the
data.
such that the total length remains constaht ,)=0. Here, In Fig. 9 we compare the graph data with the perturbative

b runs over all theNB bonds of the whole system. The theory for a single band developed in Sec. . Since in our
strength of the disorder is characterized by the dimensionlessumerical calculations the number of unit céls- 8 was not

parameter very large, we have to take into account the fact that for even
N two levels in each band—at the border and in the center of
A2=K3(AZLy). (44 the Brillouin zone—are not degenerate. Only the remaining
N—2 levels are described by the perturbative theory of Sec.
As shown in Fig. 7, the peak which characterizéér,6  lll, and consequently Eq:34) is replaced by

=0) disappears gradually, when the strengtof the disor-

der is increased. In order to be able to apply the theory de-

veloped above, we have to take into account a feature which K(7)=1+ TA(Z“)’ (46)
is particular to the graphs system. A periodic orbit of length

7 traverses on the averagé€r)= 7L, /L=4Nn,n, bonds, such that the asymptotic value in the periodic case is 2
which, for sufficiently larger, can justify the discussion pre- —2/N. Qualitatively, Eq.(46) predicts that the form factor
ceding Eq.(16) in Sec. Il. We have to bear in mind, how- for the periodic case has a minimum and beyond that ap-
ever, that in fact not all of the(7) length variationsAL,, proaches its asymptotic value from below. This nontrivial
accumulated in this way need to be independent, since ibehavior is indeed observed in our numerical data. For a
general some of the bonds are traversed several times anmgljantitative comparison we had to determine the unknown
moreover, for time-reversal symmetry the reversed bonaonstanto which relatesr to @ according to Eq(33). We
contributes the same variatiaiL,=ALy. For this reason have chosery such that the position of the minimum in
we introduce an average bond multiplicity( 7) for an orbit  K(7) is the same for theory and numerics. Indeed this leads
of period 7. Then, the action variation of such an orbit is the to a satisfactory agreement of E¢6) with the data, in par-
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025 ' - - is uniformly valid for the entirer domain. The semiclassical
Ld A ATV P L AT theory of[6] coincides with the field-theoretical expression
oa Ty | W 'l in the separate domains of its validity, and did quite well
‘ ‘ even when the two expressions were extrapolated to the do-
5 main 7=1/N. A similar field-theoretical treatment of the
LR 1 transition from the periodic to the disordered case does not
- — W TIPS oL Y| VIR TRT exist yet, and it is naturally called for.
g oLl Wl e v|‘ gl YR |
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ticular beyond the minimum. It is reasonable that this agree-
ment becomes worse for smaller since then the main as- APPENDIX
sumption behind Eq.(46)—the lack of any correlation
between different pairs of nearly degenerate Ievels—breakga
down gradually.

Summarizing our findings, we can confidently state that o
the numerical results displayed above provide convincing (cos{x)>=2
evidence in favor of the applicability of the simple semiclas- k=
sical and perturbative approaches. This theory grasps the es-
sential features of the transition, and provides simple expregand
sions(18) and(34) for the form factor and its dependence on
the disorder. The main drawback of this theory is that it , (— D2
makes use of different approximations, depending on {cogx)cogx )>:k:;20 (2k)!(2D)! '
whetherr is larger or smaller than the Heisenberg timi.1/

In the periodic limit, one could check the applicability of the where

theory in the vicinity of the Heisenberg time, by comparing it

with the field-theoretical expression which was derived for 1
periodic systems which violate time-reversal symmetry. The X=N
field-theoretical treatmen6] provides an expression which

FIG. 9. Larger behavior of the form factor for a periodic and a
weakly disordered £=0.01) quantum graphlupper and lower
solid lines, respective)ywith N=8 unit cells. The horizontal
dashed lines represent the asymptotic valkés)=2—-2/N and

For calculating the averaged form factor in the disordered
se, one needs the following quantities:

(—1)(x%)

(2K)! (A1)

©

(A2)

2

N—-1 o
>V, exp( iZan) wN/2, (A3)
n=0

andx’ denotes the same, except tlggis substituted byy’.
Since the Taylor series of the cosine contains only even pow-
ers of its argument, after some simple but tedious calcula-
tions using the properties of Gaussian random distributions,
we have the closed form:

1

0.8

0.6

04 ()= (m70/2)*N*K!. (A4)

Acr)

The same calculations also show thagi#q’, then the vari-

0.2
ables are uncorrelated:

0

<X2er2I >: (777'0'/2)2k+2|Nk+|k! [ :<X2k><xr2I >

(A5)

-0.2

04 L We introduce the parameter

(AB)

7T No
a= 5 ,

FIG. 10. The universal functioA(«).
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and using the propertyA5), we define the functio\(«a), * _ ,
which appears in the expressi@®) for K(r,0): Ala)= D, (—1)ka2k(2k)| =1—|ale” “"*Erfi(|a|/2)
k=0 !
(cogx)y=A(a). (A7) i
—1+ V7 —e “HErf(ial2) (A10)
One can also show that 2 '

(cogx)cogx’))=(cogx))(cogx')) =A%(a), (A8)
where Erfik) denotes the error function for imaginary argu-
11 1 ment, the Erfk) is the commonly used error function. The
(cogx)cogx)) = <§+§C°32X)> =5[1+A(2a)]. behavior of the functiorisee Fig. 1Dfor small arguments is
(A9) Gaussian:

After substituting Eq(A4) into Eq. (A1) for the A(a) func- )
tion results[12], Ala)=e*"[1-4a*+0(a]. (A11)
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