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Spectral correlations in systems undergoing a transition from periodicity to disorder
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We study the spectral statistics for extended yet finite quasi-one-dimensional systems, which undergo a
transition from periodicity to disorder. In particular, we compute the spectral two-point form factor, and the
resulting expression depends on the degree of disorder. It interpolates smoothly between the two extreme
limits—the approach to Poissonian statistics in the~weakly! disordered case, and the universal expressions
derived in T. Dittrich, B. Mehlig, H. Schanz, and U. Smilansky, Chaos Solitons Fractals8, 1205~1997!; Phys.
Rev. E57, 359~1998!; B. D. Simons and B. L. Altshuler, Phys. Rev. Lett.70, 4063~1993!; and N. Taniguchi
and B. L. Altshuler,ibid. 71, 4031~1993! for the periodic case. The theoretical results agree very well with the
spectral statistics obtained numerically for chains of chaotic billiards and graphs.@S1063-651X~99!11005-5#

PACS number~s!: 05.45.2a, 03.65.Sq
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I. INTRODUCTION

The spectrum of an unbounded periodic system is
ranged incontinuousbands and the corresponding eige
functions areextended~unnormalizable!. When sufficient
disorder is introduced, the system is Anderson localize
the spectrum ispointlikeand the eigenfunctions arelocalized
~normalizable!. The transition from a continuous to a poi
spectral measure is a drastic effect, which might have b
used to characterize the transition. However, this approac
of a limited value, since in practice one always deals w
finite systems, where the spectral measure is pointlike bot
the periodic and in the disordered situations. In finite s
tems, the mean spectral density is independent of the de
of disorder. Therefore, for finite systems, the effect of dis
der on the energy spectrum can be discerned only in
spectral correlations. Indeed, this approach to the charact
ization of the Anderson transition in three-dimensional s
tems was used@1#, and the spectral measures were shown
undergo an abrupt change when the critical level of disor
is reached. In the present paper we study the spectral s
tics for finite quasi-one-dimensional~Q1D! systems, which
undergo a transition from periodicity to disorder.~Q1D dis-
ordered systems of finite length can be either ‘‘metallic’’
‘‘insulating’’ depending on whether the localization length
larger or smaller than the system length. We shall cons
only the first case, and the strength of the disorder will
restricted accordingly, to the range of values which is som
times called weak disorder.! We shall focus our attention to
the spectral two-point form factor, and show that it depen
PRE 591063-651X/99/59~6!/6541~11!/$15.00
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very sensitively on the degree of disorder, and derive a u
versal expression, which interpolates continuously betw
the periodic and the disordered yet metallic limits.

Scaling theory describes the transition from metallic
insulating behavior by varying just a single parameter,
dimensionless conductancec. Here, in contrast, we encoun
ter two independent parameters characterizing the disor
The role of the conductance is played by the classical di
sion constantD that remains finite even in the case of exa
periodicity. Disorder, in the sense of a breaking of spat
symmetry, will be characterized independently by the dev
tion of the classical periodic orbits fromN-fold degeneracy
~whereN is the number of unit cells!. The presence of two
disorder parameters reflects that we are here simultaneo
dealing with dynamical ‘‘disorder’’ ~chaos! and spatial
~quenched! disorder. The transition regime we are consid
ing is therefore outside the scope of any one-parameter s
ing theory.

The study of the spectral fluctuations in the transiti
from periodicity to disorder is relevant for various theoretic
and experimental endeavors to characterize the transitio
localization. On the one hand, it provides a new and v
sensitive theoretical and computational tool. On the ot
hand, it offers the basis for the extension of the microwa
measurements of the Marburg group@2#, who measured the
spectral distribution of a periodic cavity, and are now in t
process of introducing disorder.

The spectral form factor is the main object of our discu
sion, and it is defined in the following way. The spectrum
unfolded by introducing the dimensionless energye, through
6541 ©1999 The American Physical Society
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the relationde5^d&(E)dE, where^d&(E) is the mean spec
tral density. The corresponding dimensionless timet mea-
sures time in units of the Heisenberg timetH52p\^d&. We
consider a finite spectral interval of lengthDe centered at
ec , and denote its characteristic function byx(e2ec). Since
the mean spectral density of the unfolded spectrum is un
the number of states in the intervalDe is N5De. This en-
ergy interval should be sufficiently large so thatN@1, and
sufficiently small so that the mean level density and the c
sical dynamics do not change much as the energy is sca
across it. The oscillatory part of the spectral density in t
interval is

d̃~e!5x~e2ec!F(
q

d~e2eq!21G . ~1!

The Fourier transform of this function is

dc~t!5E e22p i etd̃~e!de

5(
q

x~eq2ec!e
22p i eqt2dDt~t!. ~2!

The Fourier transform of the normalized characteristic fu
tion is denoted bydDt(t) and its width isDt;1/De. The
form factor is expressed as

K~t!5
1

N ^udc~t!u2&c . ~3!

We use^ &c to denote the spectral average, which is tak
over the nonoverlapping energy intervals located about a
of ec values. One can also perform the averaging over
free parameter of the system or over disorder when i
introduced. It can be easily shown that Eq.~3! is merely the
Fourier transform of the spectral two-point correlation de
sity @3#. For a discrete spectrum the normalization in Eq.~3!
is such that the form factor approaches a constantg as t
→`, whereg is the mean spectral degeneracy.

The expressions for the spectral form factors in the
treme situations of exact periodicity and weak disorder
known. In the latter case, when the length of the system d
not exceed the localization length, and assuming that
Heisenberg time is shorter than the Thouless time, the s
tral statistics takes the form@4#
y,
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K~t!5H gTAt/2c for t,1

1 for t.1.
~4!

The factor gT can take the values 1 or 2 depending
whether time reversal invariance is respected or violated,
c is the conductivity of the chain. The spectral form fact
for periodic systems was recently derived using both fie
theoretical methods@5# and the semiclassical approximatio
@6#. Since the latter theory is the basis for the approach
veloped in the present paper, we shall describe it briefly
introduce the concepts and the notations which will be u
in the sequel.

We consider a chain ofN identical chaotic unit cells of
length a51, with periodic boundary conditions, such th
the full system shows a discrete translation invariance@Fig.
1~a!#. ~Alternatively, we could discuss a disordered ring co
figuration which is threaded by an Aharonov-Bohm flux lin
This is the system analyzed in@5#!. In such a system, the
classical evolution within a unit cell becomes ergodic afte
short time, and one can approximate the classical evolu
in the entire chain by diffusive evolution. We shall deno
the diffusion constant byD. The time it takes the diffusive
evolution to cover the phase-space uniformly is the Thoul
time.

Due to translation invariance, the quantum spectrum c
sists of discretized energy bands whose width depends on
~dimensionless! conductivity per unit cell. It is defined a
c152p\^d1&D/a2, where^d1& is the mean level densityper
unit cell. A few examples of typical bands are shown in F
2. One can see that for lowc1, the bands are flat and sho
little structure. For high values, the bandwidth is of the ord
of the interband spacing, and the bands can hardly be re
nized if the discretization is too coarse.

FIG. 1. Periodic~a! and aperiodic~b! chains of chaotic billiards.
The chain length is denoted byL; a is the size of an individual
billiard. ThusN5L/a is the number of units in the chain.
och
FIG. 2. Typical discretized band spectra of a periodic chain withN516 unit cells. The energy levels are shown as a function of the Bl
phaseun for 10 bands in the case of~a! low, ~b! intermediate, and~c! high conductance.
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If the system under discussion is invariant under an a
unitary symmetry~such as, e.g., time reversal!, the bands are
symmetric about the center and the edges of the Brillo
zone, and the levels are doubly degenerate (g52). The re-
flection symmetry and the degeneracies are broken if
symmetry is lifted, and in this caseg51.

The quantum spectrum is characterized by two ene
scales, the meanintrabandspacing and the meaninterband
spacing. The ratio between them is at leastN, the number of
unit cells. We are interested here in the largeN limit, and
therefore these energy scales are very well separated. S
^d&'^d1&N, the spectral correlations which pertain to t
interbandscale affect the behavior of the form factor in th
range 0,t,1/N. The correlations between levels in th
same band leave their mark onK(t) in the domain 1/N,t
,1. The fact that the spectrum is composed of discrete~pos-
sibly degenerate! energy levels is expressed in the spect
form factor in the domain 1,t, where the form factor ap
proaches the constant valueg.

We used different approximations to express the form f
tor in the three domains mentioned above@6#.

~i! 0,t,1/N. Here one starts from the semiclassic
trace formula@7# and employs the ‘‘diagonal approxima
tion’’ @8# to write

K~t!'gTNtP~t!. ~5!

The factor N is due to the discrete translation symmet
because of which any generic periodic orbit is replicatedN
times in the system.gT stands for the classical degenera
due to time-reversal~or any other antiunitary! symmetry and
it can take the values 1 or 2.P(t) is the classical probability
to stay in the same unit cell from which the trajectory start
after the timet5ttH @4#. Because phase space is cover
diffusively, P(t)'(1/2pDt)1/2 and hence

K~t!'gTNANt/2c1, ~6!

where c1 is the dimensionless conductivity per unit ce
which was introduced above.

~ii ! 1/N,t,1. As t increases, the form factor provide
information on a finer energy scale. In the vicinity oft
51/N, the energy levels within a single band cannot be
solved, henceK(t'1/N) takes a value which is proportiona
to the apparent degeneracyN. Finer details of the energy
correlation inside the band are manifested for larger val
of t. To understand the behavior of the spectral form fac
one writes the levels in the bandb aseb(q), q51, . . . ,N,
and substitutes in Eq.~3!. Neglecting the cross-band correl
tions one gets

K~t!5K 1

NU(q51

N

e2 i2peb(q)tU2L
b

. ~7!

This is the spectral form factor for a band, averaged over
the bands. Theq summation can be performed by the sadd
point ~or the uniform! approximation. The main contributio
comes from the vicinity of the band extrema which cor
spond to the energy values where the spectral density is
gular. That is, the prominent features in the form factor
i-
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due to the Van Hove singularities. Denoting by]q
2eb the

second derivative of the band function at its extrema, o
gets

K~t!5C^~]q
2eb!21&bt21, ~8!

whereC is a numerical constant. It was shown in@6# that the
values of the constants which appear in Eq.~6! and in Eq.~8!
are compatible so that the two expressions match att51/N.

~iii ! t.1: The time interval is sufficient to resolve th
pointlike character of the spectrum. Hence,

K~t!5g. ~9!

In the following sections we shall study how the expre
sions~6!, ~8!, and~9! make the transition to the Poisson for
factor K(t)51 as disorder is introduced. The semiclassi
~diagonal! approximation will be the starting point for th
discussion of the transition in the first domain. This will b
done in Sec. II. To investigateK(t) in the second and the
third domains, it suffices to study a system which has
single band in the periodic limit. TheN-site periodic Ander-
son model is such a system, and it will be discussed in S
III. The important observation made in this section is that
transition is well described by considering the disorder p
turbatively. The resulting explicit formulas forK(t) in the
transition regime reproduce the numerical data extrem
well. The perturbative treatment also sheds light on the
culiar mechanism which reduces the value ofK(t) from g to
1 in the third domain when the disorder splits up the deg
eracies of the spectrum. We shall compare the results
tained separately for the three domains with numerical d
for billiard and graph~network! systems. This will be done
in Sec. IV, where we shall summarize and discuss our fi
ings.

II. INTRODUCING DISORDER—THE SEMICLASSICAL
APPROXIMATION

We shall compute the spectral form factor~3! in terms of
the Fourier transform of the oscillatory part of the spect
density. Using Gutzwiller’s trace formula,d(t) can be ex-
pressed semiclassically as a sum over the periodic orbitsj of
the system

d~t!5(
j

dDt~t2t j !t jAje
isj ~10!

with primitive period t j't. Aj denotes the weight of the
orbit corresponding to its stability and includes the Masl
phase.sj is the action of the orbit in units of\. Following the
standard approximation, we neglect the contribution of r
etitions of primitive orbits to the sum~10!. The form factor is
now given by a double sum over periodic orbits

K~t!5
1

De K (
j , j 8

dDt~t2t j !dDt~t2t j 8!AjAj 8
* ei (sj 2sj 8)L .

~11!

It is well known @8# that for short timet this sum can be
restricted to the diagonal termsj 5 j 8. However, when due to
a symmetry, the orbit appears ingj differentbut symmetry-
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related versions, and the contribution of all the symmet
conjugated orbits must be added coherently. In such ca
Eq. ~11! reduces within the diagonal approximation to

K~t!'(
j

gjdDt~t2t j !t j uAj u2. ~12!

In the case of an extended, nearly periodic system, the d
onal approximation is valid up tot51/N, the Heisenberg
time of the unit cell@3#.

From very general arguments it is clear that in a syst
whose phase space decomposes into several equivalen
spaces related by~unitary as well as antiunitary! symmetry,
the mean degeneracyg is just the number of such subspace
Thus, if time-reversal invariance is the only symme
obeyed, phase space points with opposite momenta
equivalent and consequently phase-space is partitione
gT52 subspaces. In our problem, phase space is inva
under a symmetry group containingN elements and therefor
g5NgT . Using the sum rule for periodic orbits@9,4#, the
form factor is finally written as

K~t!'gTNtP~t!, ~13!

which we introduced in Eq.~5!. The normalization of the
staying probabilityP(t) is such thatP(t)5V/v(t) at a
time t, where the classical flow covers ergodically the p
v(t) of the total energy-shell volumeV. In particular,P(t
→`)51 for an ergodic system andP(t)5N in a system
which is composed ofN unconnected ergodic cells. A mor
precise definition can be found in@4,10,3#. For the present
purpose, we need only the following property@3#: the return
probability for a system composed of chaotic unit cells
independentof the presence or absence of long-range spa
order. Thus, within the diagonal approximation, the only
fect of the introduction of disorder is the destruction of t
coherence between the contributions of orbits which w
related by symmetry in the original periodic system. Th
implies that in the diagonal approximation forK(t) @see Eq.
~13!#, g5NgT is to be replaced byg5gT .

In order to describe the transition fromg5NgT to g
5gT as the spatial symmetry is broken, we go slightly b
yond the diagonal approximation~12! in that we retain in Eq.
~11! the off-diagonal contributions from all those orbi
which are degenerate in the symmetric system,

K~t!'gT(
r

dDt~t2t r !t r uAr u2U (
j , j 851

N

ei (Dsr , j 2Dsr , j 8)U2

.

~14!

r runs now over all groups of symmetry-related orbits, wh
j , j 8 label theN orbits within each group. Possible degene
cies due to time reversal are not affected by breaking
spatial symmetry and are thus contained in the prefactorgT .
The disorder which breaks the symmetry has been assu
weak enough such that~i! the orbits within the Heisenber
time of the unit cellt r,1/N are structurally stable, i.e., n
~short! periodic orbits appear or disappear due to the dis
der, and~ii ! the disorder does not alter by much the stabil
amplitudes and the periods within a groupr so that in the
prefactor Ar , j'Ar , t r , j't r . The variation of the actions ar
-
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of the same order, but they cannot be neglected because
are measured in units of\ and, therefore, the resultin
changes in phase,Dsr , j , should be taken into account.

Comparing Eqs.~12! and~14! we see that Eq.~13! repre-
sents the form factor also in the case of a weakly brok
spatial symmetry, ifg is replaced by an effective degenera

g~t,d!5
gT

N K (
j , j 851

N

ei (Dsr , j 2Dsr , j 8)L
r

5
gT

N S N1K (
j Þ j 8

ei (Dsr , j 2Dsr , j 8)L
r
D , ~15!

which depends on the timet since the average on the righ
hand side is over all groups of periodic orbitsr with length
t r't. The dimensionless parameterd has been introduced
to characterize the strength of the symmetry-breaking dis
der in a way to be specified in Eq.~16! below.

In order to evaluate Eq.~15!, we need some information
about the distribution of the disorder contributions to t
phases of the periodic orbitsDsr , j . We assume that the cor
relation length of the disorder is negligibly small compar
to the mean length of an orbit. In this caseDsr , j is a sum of
many independent contributions, and the number of th
contributions is proportional to the period of the orbitt.
Hence, according to the central limit theorem,Dsr , j are in-
dependent Gaussian random variables with mean v
^Ds&50 and variance

^D2s&5d2t, ~16!

where the average is over all orbits of periodt. With these
assumptions we find, from Eq.~15!,

g~t,d!5
gT

N
~N1N~N21!u^eiDs&u2!

5gT~11@N21#e2d2t!. ~17!

In the first line we have used the fact that theN@1 together
with the statistical independence ofDsr , j andDsr , j 8 justified
above to replace the sum overj , j 8 by its averaged value. In
the second line, the Gaussian distribution ofDs was em-
ployed to give^eiDs&5e2^D2s&/2. It is easy to see that Eq
~15! indeed interpolates betweeng5NgT and g5gT as a
function of the disorder. Note that the parameter which ch
acterizes the disorder,d2, is multiplied by the timet over
which the disorder acts. Hence, the classification of the
order as ‘‘weak’’ or ‘‘strong’’ depends on the relevant tim
scale.

In summary, we get

K~t,d!5gT~11@N21#e2d2t!tP~t!

5gT~11@N21#e2d2t!ANt/2c1; t,1/N.

~18!

This expression provides the smooth transition from the
riodic case, via the weakly disordered to the ‘‘metallic’’ do
main. In Sec. IV we shall show that this simple formu
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reproduces the form factor in the transition from periodic
to disorder very well. We emphasize once again that
present theory does not describe strongly disordered sys
where the localization length is shorter than the system s
Such systems are outside of the scope of the present
proach, which is based on the ‘‘diagonal’’ approximation

III. INTRODUCING DISORDER –PERTURBATION
OF A MODEL WITH A SINGLE BAND

As explained in the Introduction, the form factor in th
domain t.1/N is sensitive to the correlations among t
levels which belong to the same band. Therefore, in orde
investigate the form factor in this region, it is sufficient
study a model with a single band, which is what we do in
present section. In order to use the results of this sectio
the general context, we have to remember that the form
tor in realistic systems is obtained as an average over m
bands@see Eq.~7!#. This will smooth out several features o
the single-band form factor, as will be explained in the
quel.

The system we consider is a chain ofN unit cells of length
a51, with periodic boundary conditions at the end of t
chain. The chaotic scattering process in each cell is re
sented by a random potential and the dynamics is discret
on a lattice. Choosing convenient units, the Schro¨dinger
equation reads

2~fn1122fn1fn21!1Vnfn5Efn , fn5fN1n ,
~19!

wherefn is the wave function on thenth site. The on-site
potentialsVn are uncorrelated random variables which a
picked out from the same Gaussian distribution function w
variances. They obey

^Vn&50, ^VnVm&5dnms2, n,m50, . . . ,N21.
~20!

The complexity of the scattering process is incorporated
neglecting the correlations between the potentials on dif
ent sites.

In the periodic limit (s50), the levels are arranged in
discrete band

Eq
052@12cos~2pq/N!#, q50, . . . ,N21. ~21!

The level density@compare Eq.~1!#

d~E!5 (
q50

N21

d~E2Eq!

exhibits van Hove singularities at the band edgesE50 and
E54. This is a direct consequence of the periodicity of t
system.

For sÞ0 the singularity is smoothed out and for larg
values ofs the level density becomes uniform between t
upper and lower ends of the spectrum. This is the typ
behavior we expect in generic one-dimensional disorde
systems. From here on we consider the periodic case a
limit of the disordered system whens→0. Accordingly, lev-
e
ms
e.
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els can be unfolded with the constant density. Since we c
sider here only weak disorder, the mean level density
taken as

^d&'N/4. ~22!

The spectral form factor was defined in Eq.~3!. In the
periodic case the energies are given by Eq.~21!. The spectral
form factor is

K~t,s50!5
1

NU (
q50

N21

exp~2 ipEq
0tN/2!U2

. ~23!

The second argument of the form factor denotes the stre
of the disorder, and in the present periodic case it is 0. T
expression~23! can be rewritten by expanding the expone
tial into a Bessel series:

eiNtp cosS 2pq
N D5 (

k52`

`

i keiq(2p/N)kJk~pNt!. ~24!

Exchanging the order of the summation overq andk yields

K~t,0!5NUJ0~ptN!12(
n51

`

i nNJnN~ptN!U2

. ~25!

The functionK(t,0), which is shown in Fig. 3, displays dif
ferent features in the three domains oft. In the domain 0
<t<1/N the first term in Eq. ~25! is dominant and
J0(ptN)'1. Hence, the form factor assumes the const
valueN, and does not show any structure at all because
are dealing with a model with a single band. Att.1/N, the
form factor is a highly irregular function. It fluctuates mo
rapidly with an increasing number of sitesN. However, in
order to compare the present theory with results which
derived for realistic systems, one should remember tha
the latter case, the form factor is averaged over many ba
which differ in their widths and structure. Such averagi
can be effectively achieved by smoothingK(t,0) over a
small t window.

The smoothed form factor̂K(t,0)&t is shown in Fig. 3.
In the range 1/N,t,1/p, Eq. ~25! is dominated by the
Bessel function with zero index. The average behavior
largeN andt,1/p can be approximated as

^K~t,0!&t'N^uJ0~ptN!u2&t'
1

p2t
, ~26!

where we used the asymptotic form of the Bessel functio

Jn~z!'A 2

zp
cos~z2np/22p/4!

and the averagêcos2&t51/2.
In the third domain,t.1/p, the window-averaged func

tion ^K(t,0)&t converges to a constant value. This const
is g, the average degeneracy of the levels, and it appr
mately equals 2 since most levels are doubly degenerate~ex-
ceptE050 and alsoEN/254 if N is even!. In this range oft
values, all Bessel functions contribute. Resumming
asymptotic forms of the Bessel functions, we get
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^K~t,0!&t'2. ~27!

We conclude from this discussion that the one-ba
model, after proper averaging, reproduces the expected
tures ofK(t,0) in the relevant ranget.1/N.

Introducing disorder, the form factor is given by

K~t,s!5
1

N K U (
q50

N21

exp~2 ipEq
stN/2!U2L

s

, ~28!

where^ &s represents the average over the disorder andEq
s

are the eigenenergies of Eq.~19! with s!1.
In the case of weak disorder, we can use degenerate

turbation theory to calculate how doubly degenerate ene
levels are split. In first order the eigenenergies are given

E6q
s 'E6q

0 6
1

NU (
n50

N21

Vn expS 6 i2
2p

N
qnDU

for qÞ0, N/2, ~29!

FIG. 3. The form factor@see Eq.~23!# for the unperturbed sys
tem with lengthN564 ~dots!, the corresponding smoothed da
~points!, and the approximation equations~26! and~27! ~lines!. For
t,1/p, the first term in the Bessel function expansion domina
the form factor. After averaged over 1/pN in t, the smoothed data
fit to the theoretical function~26!. For t.1/p, the smoothed form
factor converges tog'2. Here the average is taken over a windo
of 1/p in t.
d
a-

er-
y
y

'Eq
0 for q50 ~and q5N/2 if N is even!.

~30!

Here we ignored aq-independent constant, since it does n
affect the form factor. The main effect of the perturbation
that it breaks the degeneracy of the energy levels which
symmetrically placed about the center of the band. T
change of the mean level spacing is small, and can be
glected to leading order.

Substituting the perturbed energy levels into Eq.~28! and
leaving out the unimportantq50 ~andq5N/2 if N is even!
levels, we have

K~t,s!'
1

NU (
q51

~N21!/2

2e2p iEq
0tN/2

3cosS 1

2U (n50

N21

Vnei2(2p/N)qnUpt DU2

. ~31!

The disorder averaging can be performed analytically, as
scribed in the Appendix. For largeN it leads to

K~t,s!511A~2a!1A2~a!@K~t,0!22#, ~32!

where the universal functionA(a) is defined in the Appen-
dix. A new combination of the variables involving the diso
der strength shows up in this expression,

a5
ptsAN

2
, ~33!

governing the properties of the transition from the periodic
the disordered case. For larget values the form factor con
verges to 1, since the perturbation breaks the degenerac
the levels of the periodic system. Please note that—as in
semiclassical result Eq.~17!—the deviation from the peri-
odic form factor is governed by a dimensionless parame
containing the product of disorder strength and time.

ApproximatingK(t,0) by its average~26! yields

^K~t,s!&t'H ~12e2a2
!21e2a2

/p2t for t,1/p

11A~2a! for t.1/p.
~34!

The t,1/p part describes how the band structure is d
stroyed while thet.1/p part describes how the double d
generacy of the levels is resolved~see Fig. 4!.

We can interpret the result fort.1/p in terms of the
distributionps(s) of splittings of levelss5Eq

s2E2q
s which

are degenerate in the periodic case. For larget the form
factor is the Fourier transform of this distribution:

K~t,s!511E
0

`

ds ps~s!cos~stpN/2!. ~35!

Using the derived expression~A10! for A(a), we can con-
clude that the splitting distribution has the form

ps~s!5dpW~sd!, ~36!

where pW(s)5pse2ps2/4/2 is the Wigner surmise andd
5sAN is the mean splitting of levels. The Wigner surmise

s
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known to be the exact distribution of the difference of t
two eigenvalues of a 232 GOE random matrices. We ca
conclude that in the present case, the ensemble of a 232
matrix describing the splitting of levels in the first-order d
generate perturbation theory reproduces the spacing dist
tion of the corresponding GOE with mean level spacingd.

To check the applicability of the leading-order perturb
tion theory, we computed the form factor numerically a
compared with the analytical result. The parameter ra
wass50.002,. . . ,0.256 andN532, . . . ,256. The numeri-
cal results have been averaged for 1000 different diso
realizations. In Fig. 4 we compare formula~32! and the
simulations. We have found surprisingly good agreemen
the whole range oft. The fact thatK(t) displays a minimum
where its value is less than 1, and that it approaches 1
ymptotically from below, is a direct consequence of th
Wigner distribution of level splittings. In the next section w
shall show that this formula applies very well also in the ca
of a multibanded spectrum, indicating that the splitting d
tribution follows the Wigner distribution in more compl
cated situations, too.

IV. COMPARISON WITH NUMERICAL RESULTS
AND DISCUSSION

A. A chain of chaotic billiards

The first class of systems which were investigated
merically are chains of chaotic billiards~see Fig. 1!, which
can be arranged in a periodic@Fig. 1~a!# or a disordered@Fig.
1~b!# fashion. We denote the size of an individual billia
~i.e., the unit cell in the periodic case! by a and the chain
length byL ~and N5L/a@1). In the following we discuss
weakly disordered chains and assume that the conduct
of the chainc5N21c1*1. On time scales larger than th
classical ergodic time for a single cell, the classical dynam
in the chain of billiards is diffusive, characterized by th
diffusion constantD. In the diffusive regime, the classica
dynamics of the system, and hence the diffusion const
are, to a good approximation, independent of the strengt

FIG. 4. Comparison between the form factor averaged for 1
samples (s50.008,N532) and our perturbative expression. Bo
of them are smoothed over a 0.5 window int. Points are from the
numerical calculation; the solid line is the perturbative formula
Eq. ~32!.
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the disorder. The correlations in the quantum spectrum, h
ever, crucially depend on whether the system is periodic
not, as discussed above.

In this section we present numerical results for the fo
factor K(t) in weakly disordered chains. The case of pe
odic chains was analyzed in detail in two previous public
tions @6#. Here we focus on the crossover from the period
case to the weakly disordered~metallic! case, which is pre-
dicted to follow Eq.~18! as a function of the disorder param
eterd. Due to time-reversal invariance of the billiard chai
gT52.

We have considered a chain composed of unit cells
shown schematically in Fig. 5. The sizes of the half dis
were chosen so that the contribution of direct trajectories
the conductance is minimized. Disorder was introduced
shifting the disks at random to the right or to the left by
small amount,Dx. The dimensionless variance^(Dx)2& is a
measure of the disorder strength.

Consider a periodic orbitj which hits M disks, m
51, . . . ,M . Its actionsj ~measured in units of\) is affected
by the M shifts Dxm and changes by an amountDsj . It is
plausible that̂ D2sj&}^(kDx)2&t and thus

d25Cd^~kDx!2&. ~37!

We have used Eq.~37! to estimate the quantityd2 in Eq.
~18!. The constant of proportionalityCd in Eq. ~37! remains
undetermined; it depends on the geometry of the system
on k.

We have performed quantum-mechanical calculations
systems composed ofN516 unit cells, with disorder param
eters covering the domain of applicability of Eq.~18!. The
quantum-mechanical wave functions satisfy the Helmho
equation augmented with Dirichlet boundary conditions
the channel walls and periodic boundary conditions along
chain. The quantum spectrum of this system can be de
mined using the method described in@6#. In this way we
have obtained the quantum spectra for several realization
disorder, as well as for the periodic chain.

Figure 6 summarizes the results of our numerical calcu
tions. It showsK(t,d) as a function oft, in the periodic
case, for weakly broken periodicity~four different disorder
strengths! and for weak disorder. The conductivity per un
cell is independent of the disorder, and its numerical va
was determined from a simulation of the classical dynam
of the system. A fit to the diffusion propagator at times larg
than the ergodicity time allows one to determineD from
which c1.33 emerges. The calculations were conducted
six values of the disorder strengthsD2[^k2(Dx)2&50.0,
6.8731024, 9.5531024, 1.4931023, 2.5631023, and

0

f

FIG. 5. Unit cell of the chain of chaotic billiards.
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6548 PRE 59T. DITTRICH et al.
4.3831023. In all cases, we have calculatedK(t) from 1500
eigenvalues, in the domain ofk values which supports 28
open transverse channels.

The semiclassical theory for the periodic case reprodu
the numerical results uniformly well over the three ranges
t values. The semiclassical theory matches very well
numerical results for the disordered systems in the dom
t,1/N. However, the numerical results in the domain 1N
,t,1 are not sufficiently smooth to allow a meaningf
comparison with the theory developed in Sec. III. In th
domain, the spectrum is afflicted by frequent ne
degeneracies which make the calculation rather costly
terms of computer resources. This problem is circumven
in the periodic case, where the translational invariance
used to facilitate the calculations. For larger values of
disorder, the degeneracy disappears, but the effect we
interested in disappears, too. In the next subsection we
cuss a different model exhibiting a transition from period
ity to weak disorder, where a quantitative comparison in
transition regime is possible.

B. A chain of quantum graphs

In this section we investigate a second model system
quantized graphs which were recently shown to provide
excellent example for a quantum chaotic system@11#. The
graphs are defined byv51, . . . ,V vertices andb51, . . . ,B
bonds with lengthsLb connecting them. The wave functio
on a graph is a B-component function
@c1(x1), . . . ,cB(xB)#T. Each component satisfies the Schr¨-
dinger equation (\52m51)

S d2

dxb
2

1k2D cb~xb!50. ~38!

At the vertices, the wave function must satisfy bounda
conditions which impose continuity and current conser
tion. They guarantee that the Schro¨dinger operator is self-
adjoint, and its spectrum consists of discrete points. Imp
menting the boundary conditions, one derives a sec
equation which provides a convenient means to compute
spectrum numerically. The graph is essentially a o

FIG. 6. K(t) for chains of chaotic billiards and differen
strengths of disorder.
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dimensional system, and therefore the mean~wave number!
spectral density is constant, proportional to the total length
the graph.

The graph representing one unit cell was chosen to be
‘‘cylindrical’’ network shown in the inset of Fig. 7. The
cylinder consists here ofnx52 layers withny54 vertices
each. The unit cell was constructed from more than one la
in order to remove any residual symmetry. Two bonds le
from each vertex to the neighboring layers, two more
other vertices in the same layer. Hence we have for the
cell V5nxny and B52nxny . The lengths of all bonds are
random, but the total length of the graph was fixed atLH

52p such that the mean length of a bond isL̄
5p(2Nnxny)

21 and the mean level spacing with respect
the wave numberk is unity. For this reason it is natural t
use, instead of energy and time, the wave numberk and the
length l as conjugate variables, since then no unfolding
necessary. In complete analogy to Eq.~3!, we introduce the
spectral form factor via the length spectrum of the oscillat
spectral densityd̃(k)5(qd(k2kq)21 using a rectangula
window

K~t!5
1

Dk
^ud~t!u2&, ~39!

d~t!5E
k2Dk/2

k1Dk/2

dk8e22p iktd̃~k!. ~40!

t5 l /2p is simply given by the path lengthl measured in
units of the Heisenberg lengthLH52p.

The classical analog for the quantum graph is the rand
walk of a particle moving freely along the bonds and sc
tering at the vertices according to the quantum transit
probabilities @11#. In the graphs we consider here, exac
four bonds are attached to each of the vertices. In this c
the transition probability is 1/4 for all bonds, and th
Lyapunov exponent is ln 4 when time is scaled with t
mean time between successive vertex traversals. The co
grained classical evolution is diffusivênw

2 &5Dnn5Dll ,

FIG. 7. The form factor for a quantum graph consisting ofN
58 unit cells with 234 vertices each. The unit cell is shown in th
inset with each dot corresponding to a vertex. The form fact
were computed using the lowest 10 000 bands. Each spectral
dow in Eq. ~40! contained 30 bands. The disorder strengths w
~top to bottom! D50, 0.02, 0.05, 0.1, 0.5. The smooth curve re
resents the theoretical prediction without disorder.
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wherenw is the distance along the chain measured in u
cells~i.e.,nw is the winding number in the periodic case!, l is
the length of a trajectory, andn5 l /L̄. When allowance is
made for the fact that only half of the traversed bonds c
tribute to the diffusive transport, the diffusion constant
easily found from the analogy to a random walk on a
lattice with discrete time:Dn51/2nx

2 , Dl5Nny /pnx .
The return probability entering Eq.~13! decays ast21/2

until it saturates at 1 when the diffusion covers the wh
chain ergodically. The number of unit cellsN58 was chosen
such that this saturation occurs beyond the Heisenberg
of the unit cell tH

(uc)51/N and is thus not relevant for th
form factor. In this case the return probability is explicit
given by

P~t!5
N

2pADlt
~terg

(uc)<t<1/N!. ~41!

Usingg52N for the mean degeneracy of periodic orbits, w
finally obtain for the form factor

K~t!5NA nx

pny
Nt ~Nt,1!, ~42!

which is shown in Fig. 7 with a smooth solid curve and h
to be compared to the data obtained numerically with
disorder ~upper fluctuating curve!. Beyond Nt51 the
smooth curve shows the decay of the form factor as 1t.
Although the quantitative agreement is not perfect,
theory reproduces the essential features of the form fac
and in particular the peak at the Heisenberg time is corre
predicted.

The disorder was introduced by small changes in
lengths of all bonds

Lb
(D)5Lb

(0)1DLb , ~43!

such that the total length remains constant^DLb&50. Here,
b runs over all theNB bonds of the whole system. Th
strength of the disorder is characterized by the dimension
parameter

D25k2^D2Lb&. ~44!

As shown in Fig. 7, the peak which characterizesK(t,d
50) disappears gradually, when the strengthd of the disor-
der is increased. In order to be able to apply the theory
veloped above, we have to take into account a feature w
is particular to the graphs system. A periodic orbit of leng
t traverses on the averagen(t)5tLH /L̄54Ntnxny bonds,
which, for sufficiently larget, can justify the discussion pre
ceding Eq.~16! in Sec. II. We have to bear in mind, how
ever, that in fact not all of then(t) length variationsDLb
accumulated in this way need to be independent, sinc
general some of the bonds are traversed several times
moreover, for time-reversal symmetry the reversed bo
contributes the same variationDLb5DLb̄ . For this reason
we introduce an average bond multiplicitym(t) for an orbit
of periodt. Then, the action variation of such an orbit is t
it
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e

e

s
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ss
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nd,
d

sum of n(t)/m(t) independent contributions, each with
variancem2(t)D2. Hence we find for the variance of th
sum

^D2s&5n~t!m~t!D2. ~45!

In order to obtain an estimate form(t), we assume that a
typical orbit covers ergodically some region of the pha
space such that each bond is traversed twice on the ave
~with momentum61) and hencem52. This is the case
e.g., at the Heisenberg time for an isolated unit cell, and
lacking a satisfying theory form(t)—we have no choice bu
to generalize this special case. Comparing Eq.~45! with Eq.
~16!, we find for the disorder strengthd258NnxnyD

2. This
is the parameter which we have chosen in Fig. 8 in orde
compare the numerical data from Fig. 7 with the result
Sec. II. In order to better distinguish the curves for smallD,
we plot the quantity 12Kd(t)/K0(t) which is, according to
Eqs. ~13! and ~17!, given by (N21)/N(12e2d2t) and find
indeed a reasonable agreement between the theory an
data.

In Fig. 9 we compare the graph data with the perturbat
theory for a single band developed in Sec. III. Since in o
numerical calculations the number of unit cellsN58 was not
very large, we have to take into account the fact that for e
N two levels in each band—at the border and in the cente
the Brillouin zone—are not degenerate. Only the remain
N22 levels are described by the perturbative theory of S
III, and consequently Eq.~34! is replaced by

K~t!511
N22

N
A~2a!, ~46!

such that the asymptotic value in the periodic case is
22/N. Qualitatively, Eq.~46! predicts that the form facto
for the periodic case has a minimum and beyond that
proaches its asymptotic value from below. This nontriv
behavior is indeed observed in our numerical data. Fo
quantitative comparison we had to determine the unkno
constants which relatest to a according to Eq.~33!. We
have chosens such that the position of the minimum i
K(t) is the same for theory and numerics. Indeed this le
to a satisfactory agreement of Eq.~46! with the data, in par-

FIG. 8. Reduction of the form factor due to disorder for vario
values of the disorder strengthD50.01, 0.02, 0.05, 0.1, 0.2, 0.5
~bottom to top! compared to the prediction of Eq.~17!.
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ticular beyond the minimum. It is reasonable that this agr
ment becomes worse for smallert, since then the main as
sumption behind Eq.~46!—the lack of any correlation
between different pairs of nearly degenerate levels—bre
down gradually.

Summarizing our findings, we can confidently state t
the numerical results displayed above provide convinc
evidence in favor of the applicability of the simple semicla
sical and perturbative approaches. This theory grasps th
sential features of the transition, and provides simple exp
sions~18! and~34! for the form factor and its dependence o
the disorder. The main drawback of this theory is tha
makes use of different approximations, depending
whethert is larger or smaller than the Heisenberg time 1/N.
In the periodic limit, one could check the applicability of th
theory in the vicinity of the Heisenberg time, by comparing
with the field-theoretical expression which was derived
periodic systems which violate time-reversal symmetry. T
field-theoretical treatment@5# provides an expression whic

FIG. 10. The universal functionA(a).

FIG. 9. Large-t behavior of the form factor for a periodic and
weakly disordered (D50.01) quantum graph~upper and lower
solid lines, respectively! with N58 unit cells. The horizontal
dashed lines represent the asymptotic valuesK(t)5222/N and
K(t)51. The heavy dashed lines show^K(t,s)&t according to
Eq. ~46!. The parameters entering Eq.~46! via Eq. ~33! has been
determined by adjusting the location of the minimum of the fun
tion A(2a) to the minimum observed in the numerical data.
-

ks

t
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-
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e

is uniformly valid for the entiret domain. The semiclassica
theory of @6# coincides with the field-theoretical expressio
in the separate domains of its validity, and did quite w
even when the two expressions were extrapolated to the
main t'1/N. A similar field-theoretical treatment of th
transition from the periodic to the disordered case does
exist yet, and it is naturally called for.
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APPENDIX

For calculating the averaged form factor in the disorde
case, one needs the following quantities:

^cos~x!&5 (
k50

`
~21!k^x2k&

~2k!!
~A1!

and

^cos~x!cos~x8!&5 (
k50, l 50

`
~21!k1 l^x2kx82l &

~2k!! ~2l !!
, ~A2!

where

x5
1

NU (
n50

N21

Vn expS i2
2p

N
qnDUptN/2, ~A3!

andx8 denotes the same, except thatq is substituted byq8.
Since the Taylor series of the cosine contains only even p
ers of its argument, after some simple but tedious calcu
tions using the properties of Gaussian random distributio
we have the closed form:

^x2k&5~pts/2!2kNkk!. ~A4!

The same calculations also show that ifqÞq8, then the vari-
ables are uncorrelated:

^x2kx82l &5~pts/2!2k12lNk1 lk! l ! 5^x2k&^x82l &.
~A5!

We introduce the parameter

a5
ptANs

2
, ~A6!

-



u-
e

PRE 59 6551SPECTRAL CORRELATIONS IN SYSTEMS UNDERGOING . . .
and using the property~A5!, we define the functionA(a),
which appears in the expression~32! for K(t,s):

^cos~x!&5A~a!. ~A7!

One can also show that

^cos~x!cos~x8!&5^cos~x!&^cos~x8!&5A2~a!, ~A8!

^cos~x!cos~x!&5 K 1

2
1

1

2
cos~2x!L 5

1

2
@11A~2a!#.

~A9!

After substituting Eq.~A4! into Eq. ~A1! for theA(a) func-
tion results@12#,
nd
A~a!5 (
k50

`

~21!ka2k
k!

~2k!!
512uaue2a2/4 Erfi~ uau/2!

511Ap
ia

2
e2a2/4 Erf~ ia/2!, ~A10!

where Erfi(x) denotes the error function for imaginary arg
ment, the Erf(x) is the commonly used error function. Th
behavior of the function~see Fig. 10! for small arguments is
Gaussian:

A~a!5ea2/2@12 1
24 a41o~a6!#. ~A11!
os
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