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Abstract. Chaotic systems that decompose into two cells connected only by a narrow channel
exhibit characteristic deviations of their quantum spectral statistics from the canonical random-
matrix ensembles. The equilibration between the cells introduces an additional classical timescale
that is also manifest in the spectral form factor. If the two cells are related by a spatial symmetry,
the spectrum shows doublets, reflected in the form factor as a positive peak around the Heisenberg
time. We combine a semiclassical analysis with an independent random-matrix approach to the
doublet splittings to obtain the form factor on all time (energy) scales. Its only free parameter is
the characteristic exchange time between the cells in units of the Heisenberg time.

1. Introduction

Most of the pioneering enquiries into quantum chaos have been focused on bounded systems—
closed billiards, atomic systems—whose classical dynamics knows only a single global
timescale defined by, e.g., the inverse Kolmogorov entropy, which describes the ergodic
coverage of phase space. The absence of other classical times has facilitated the understanding
of quantum-to-classical relationships and has opened the view for universal features in spectra
and eigenfunctions of classically chaotic systems.

Extended systems represent another, still simple, extreme. They reach ergodicity only on
a timescale that exceeds all other characteristic times. With extended systems, basic solid-state
concepts enter quantum chaos. The crucial role of long-range spatial order, in particular, for
spectrum and transport has to be considered in the unfamiliar context of dynamical disorder.
Using a semiclassical approach, some light was recently shed on the spectral signatures of
chaotic diffusion, both in the band structure of periodic systems [1] and in the discrete spectra
of disordered systems with localized eigenstates [2–4].

A region intermediate between bound and extended is marked by systems comprising
of just a few weakly connected similar cells. In the following, we will consider spatial
confinements or phase-space structures that decompose into two compartments, connected
only by a ‘bottleneck’ (figure 1) [5]. Equilibration between the cells then takes much longer
than the ergodic coverage of a single cell. It constitutes a second independent timescale of the
classical dynamics.
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Figure 1. Two-cell billiard with narrow bottleneck, of arbitrary (a) and reflection-symmetric shape
(b).

Chaotic systems with two cells have quite diverse applications. The phase space of alkali
atoms in a strong magnetic field may contain two almost disjunct chaotic regions, related by
a spatial symmetry [6]. Similar systems arise as models for non-ergodic reaction dynamics in
quantum chemistry [7]. More generally, they form prototypes of systems decomposing into
two similar, weakly coupled parts. In this sense, they can represent heavy nuclei in a final state
of fission [8], or nuclei with their two isospin subsystems interacting weakly due to a slight
breaking of isospin invariance [9].

In their quantum mechanical properties, two-cell systems already exhibit the decisive
influence of spatial symmetry. If the two cells are of arbitrary shape or size (figure 1(a)),
their restricted communication will merely be reflected in a quantitative deviation from the
canonical random-matrix statistics [5]. It does not introduce any qualitatively new feature.
The situation changes considerably if the cells are related by some twofold spatial symmetry
(figure 1(b)). A genuine quantum phenomenon, a coherent mode of transport between the
cells emerges, and the spectrum shows systematic quasidegeneracies. This clustering of levels
is manifest in the two-point correlations as a markedpositivepeak on the scale of the mean
single-cell level separation, or in the time domain, the single-cell Heisenberg time [1].

This phenomenon should be carefully distinguished from tunnelling. To be sure, the
doublets do resemble tunnel splittings in the sense that they are based on a discrete spatial
symmetry and correspond to quantum coherent transport on very long timescales. Moreover,
in the wavenumber regime where there is no open channel in the constriction between the
cells, the wavefunctions decay exponentially into this region. Even at higher wavenumber, the
amplitude is often strongly suppressed there (cf figure 6). Since, however, there is neither a
potential nor a dynamical barrier involved, this transport is slow but not classically forbidden.

Chaos-assisted tunnelling, in contrast, is a hallmark of bistable systems with a mixed phase
space [10,12,13]. It occurs between symmetry-related pairs ofregular islands in phase space
that are separated by a chaotic region. Here, in contrast, we are dealing with symmetry-related
chaoticregions communicating through a narrow bridge in space. Still, a similar situation can
also occur in mixed bistable systems. In fact, the distribution of the splittings of doublet states
supported by symmetry-related pairs of chaotic regions [14] forms an important input to the
distribution of tunnel splittings in chaos-assisted tunnelling [15].

In the following sections, we develop a theory for the spectral statistics of two-cell systems
that rests largely on recent progress in the analysis of band structures of classically chaotic
systems with spatial periodicity [1]. There, an important input has been the notion of form
factors with a winding-number argument, specific for transitions spanning a corresponding
number of unit cells. Likewise, the group property of a reflection or translation symmetry of
a two-cell system enables the definition of form factors with a rudimentary spatial resolution,
expressed by a binary index that indicates either return to the same cell or transport into the
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opposite cell.
However, compared with [1], we not only go from a large value ofN , the number of unit

cells, toN = 2. Here, we shall concentrate on the case of slow exchange between the cells, the
‘weak-coupling’ or ‘tight-binding’ limit in solid-state terminology, while [1] was devoted to
the opposite case. This implies that, even if the two-cell system is ‘unfolded’ to form an infinite
chain (see appendix A), the concept of homogeneous diffusion no longer applies. Rather, in
the unfolded picture, we are dealing with a spatially discrete diffusion process that deviates
significantly, on short timescales, from ordinary diffusion. Concerning the spectral statistics,
the principal consequence is that we are now dealing withflat ‘bands’.

In order to extend a semiclassical treatment of the spectral correlations to energy scales
below the mean level spacing, information on the spreading of the possibly complex trajectories
that mediate the long-time transitions [14,16], analogous to the sum rules for ergodicity [17]
or diffusion [2,3], would be required. Alternatively, we would have to surmount the diagonal
approximation. We circumvent this open problem and adopt a different strategy. In the spirit
of Berry’s semiclassical approximation for the form factors of random-matrix ensembles [18],
we impose plausible assumptions on the distribution of the narrow splittings. They are based
on the relation of the doublet splittings in two-cell compounds to the resonance widths in
corresponding single-cell systems, obtained by opening up the system at the constriction. We
derive this relation in the case of a single open channel between the cells, where doublet
splittings and resonance widths are not simply identical.

Switching back from the distribution of doublet splittings to the corresponding time-
domain function valid on long timescales, we match the resulting long-time asymptote with
the semiclassical short-time behaviour. In this way, we achieve expressions for the spectral
two-point correlations on all timescales. They are universal in that they contain, as the only
free parameter, the characteristic time for equilibration between the cells. It is the two-cell
analogue of the conductance, the scaling parameter in the case of long chains.

We introduce the classical concepts relevant for the dynamics of systems with two identical,
connected cells in section 2. In section 3, we define form factors specific for an element of
the symmetry group of the system. A semiclassical theory for the short-time regime of these
form factors is developed in section 4, while section 5 is devoted to their quantum long-time
behaviour. Some of these calculations are extended to the case of unrestricted values ofN in
two of the appendices. Section 6 serves to introduce four illustrative models: two versions
of a Sinai billiard [19, 20], quantum graphs [21] configured in such a way that they form a
two-cell system, a two-cell variant of the quantum kicked rotor [1, 22], and a random-matrix
model [11, 12]. Spectral data obtained numerically for these models corroborate our theory.
Section 7 contains a synopsis of the various limiting cases covered in this paper.

2. Classical dynamics in two-cell systems

As a minimal version of a classical two-cell system, consider the following model: two spatially
confined compartments are connected by some narrow duct (figure 1(a)). In view of the
intended applications, we require a few additional properties. The leakage from the cell where
the system is prepared (subscript ‘0’ in the following) to the opposite side (subscript ‘1’) should
be completely described by a single timescale 1/λ. This amounts to an exponential decay of
the population from the initial cell, if it were opened by removing the opposite cell. We require
the rateλ to be the same in both directions. A sufficient condition for this to be true is that the
cells form a (translation- or reflection-) symmetric pair (figure 1(b)). Finally, we assume that
the dynamics within the cells is chaotic and thus ergodic, and that coverage of a single cell is
reached instantaneously on the scale 1/λ.
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Under these conditions, the time evolution of the probability to stay in either cell obeys
the following pair of simple master equations:

Ṗ0(t) = λ(P1(t)− P0(t))

Ṗ1(t) = λ(P0(t)− P1(t)).
(1)

The relaxation into equilibrium of the two probabilities, given by limt→∞ P0/1(t)/(P0(t) +
P1(t)) = 1

2, is governed by the rate3 = 2λ. From an initial stateP0(0) = 1,P1(0) = 0, they
evolve as

P0/1(t) = 1
2(1± e−3t ). (2)

The population difference

Pd(t) = P0(t)− P1(t) (3)

is another relevant quantity. Besides the sumP0(t) + P1(t), it plays the r̂ole of an eigenmode
amplitude of the master equations (1). Its time evolution reads, for the same initial state as
above,

Pd(t) = e−3t . (4)

The above considerations also apply if the cells communicate through two or more physical
channels. This includes, in particular, the case of two cells connected at both ‘ends’ to form a
ring. The rates of probability exchange through the channels then just add to give the global
rateλ. The diffusive dynamics that results if a two-cell ring configuration is unrolled into an
infinite chain, is discussed in appendix A.

As an example, we state the explicit expression for the decay rateλ in the case of an
ergodic double billiard as in figure 1. The phase-space area leaving one cell of the billiard in
time dt through the connecting channel of widths, at unit speed, is d� = 2sdt . This is to be
normalized by the areaA of a cell and by 2π , the size of momentum space projected onto the
energy shell. The resulting approximation for the escape rate is [23]

λerg= s

πA
. (5)

3. Generalized form factors

In quantum systems, each unitary symmetry gives rise to a constant of the motion, a ‘good
quantum number’. It takes as many values as there are irreducible representations of the
symmetry, and the full spectrum can be decomposed into subspectra, each of which pertains to a
given irreducible representation. Formally, the decomposition is effected by the projectors [24]
P̂ν = N−1∑N−1

n=0 χν(gn)Û
†(gn), ν = 0, . . . , N − 1. Here,N is the number of elementsgn of

the symmetry group and simultaneously, the number of its representations (for simplicity, we
assume all representations to be one dimensional). The character ofgn in theνth representation
is referred to asχν(gn), andÛ (gn) denotes the unitary transformation corresponding togn.
Spectral densities and correlation functions within a given representation can then be defined
on the basis of the symmetry-projected Green functionĜν(E) = P̂νĜ(E), with Ĝ(E), the
Green function for the entire spectrum. For example, the symmetry-projected spectral density
in theνth representation is defined as

d̃ν(E) =
∑
α

δ(E − Eα,ν) = − 1

π
Im tr[Ĝν(E)] (6)

where theEα,ν are the eigenenergies in theνth representation.
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For the study of quasidegenerate doublets, another type of spectral density is as relevant as
the symmetry-projected one. As an alternative tod̃ν(E), one may define densities and derived
quantities that refer to a group elementgn, instead of an irreducible representationν. The
symmetry group induces a tiling of (phase) space, i.e., a decomposition into disjunct segments
such that each of them is mapped onto all the others by the transformations in the group, thus
covering the entire space [25]. A group-element-specific spectral density therefore provides a
rudimentary spatial resolution on the scale of the fundamental domain of the group.

If all representations are one-dimensional, the set of columns of the matrixχν,n = χν(gn)
of group characters forms an orthogonal basis inN dimensions [24]. The same is true for
the rows. Therefore, the matrix as a whole has full rank and is invertible. We refer to the
inverse matrix asχ−1. Multiplying the vector of symmetry-reduced spectral densitiesd̃ν(E),
equation (6), from the left byχ−1, we obtain the spectral densities [1]

dn(E) =
N−1∑
ν=0

(χ−1)ν,nd̃ν(E) (7)

= − 1

π
Im

∫
fd

dq Ĝ(gn(q), q;E). (8)

The space integral in equation (8) only extends over the fundamental domain (subscript ‘fd’)
of the tesselated space. The first argument of the Green function in the third line is the image
of its second argument,q, undergn. This suggests thatdn(E) refers to transitions from any
segment to its image undergn.

By Fourier transforming equation (7) with respect to energy, we arrive at the analogous
density in the time domain,

an(τ ) = 〈dfd〉−1
∫ ∞
−∞

dr e−2π irτ dn(r/〈dfd〉) (9)

=
∫

fd
dq 〈gn(q)|Û (tHτ)|q〉. (10)

We have switched to dimensionless energy,r = 〈dfd〉E, and time,τ = t/tH, by scaling with the
mean spectral density〈dfd〉 in the symmetry-reduced space, and the corresponding Heisenberg
timetH = 2πh̄〈dfd〉, respectively. Note that we restrict ourselves to leading semiclassical order
such that the mean spectral density〈dfd〉 does not depend on the irreducible representationν.
Equation (10) describes an amplitude to return modulo the symmetry transformationgn. The
corresponding return probability is given by the form factor

Kn(τ) = 1

1rfd
|an(τ )|2 (11)

where1rfd is the total width, in units of〈dfd〉, of the spectrum considered.
In (9) we have assumed that an arbitrarily large spectral window can be used for the

computation ofan(τ ). In this case, equation (11) is exactly equivalent to a definition of
the form factor as the Fourier transform of a spectral autocorrelation function according to
the Wiener–Khintchin theorem. In numerical computations this relation holds approximately
provided that 1� 1r. In this limit, the result also does not depend on the form of the window
function used to truncate the spectrum. On the other hand, the spectral window must be chosen
small with respect to classical energy scales in order to allow for a meaningful semiclassical
description. Definitions of form factors for finite spectral segments, other than equations (9)
and (11), e.g., truncating directly the two-point correlations and not the density, are conceivable
but inappropriate for our purposes. These practical aspects of the computation are discussed
in [1,3]. We shall give more details of the computation of the form factors in section 6, in the
context of the respective models to which they apply.
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For a two-cell system, a symmetry that maps one cell to the other can be a reflection
or a translation. Their group elements are identity (denoted byn = 0 in the following) and
reflection or translation (n = 1, without distinguishing the two). The characters are both 1 in
the symmetric (subscript ‘+’) representation, and±1 in the antisymmetric (‘−’) representation.
Following the general discussion above, we define symmetric and antisymmetric form factors,
respectively, by

K̃±(τ ) = 1

1rfd
|ã±(τ )|2. (12)

The amplitudes̃a±(τ ) are obtained, for example, by sorting the spectral data of the two-cell
system according to the symmetry of the corresponding eigenstates, and Fourier transforming
as in equation (9). Alternatively,̃K± can be interpreted as the form factors of a single
cell with Neumann or Dirichlet boundary conditions, respectively, imposed on the line(s)
in configuration space common to the two cells. In general, this choice of boundary conditions
does not affect the chaoticity of the classical dynamics. Hence we expect the form factor of a
single cell to equal the random-matrix result [26] up to normalization, i.e.,

K̃±(τ ) = 1
2KRMT(τ ). (13)

Form factors specific for return to the initial (subscript ‘0’) or switching to the opposite cell
(‘1’) are defined according to equation (7) and equations (9), (11) as

K0/1(τ ) = 1

1rfd
|ã+(τ )± ã−(τ )|2. (14)

Note that the amplitudes are superposedbeforesquaring. In section 5 we show that considering
the incoherentsuperpositionsK0(τ )±K1(τ ), in turn, provides an approximate access to the
distribution of doublet splittings and inter-doublet separations, respectively.

The combination of amplitudes̃a+(τ )+ ã−(τ ) enteringK0(τ ) in equation (14) is obtained
in (9), whendn on the rhs is replaced by the total spectral density of the two-cell system.
HenceK0 is—up to scaling of time and energy—equivalent to a form factor defined without
any reference to the spatial symmetry of the two cells.

In equations (12) and (14) we have chosen a normalization which ensures thatK̃±(τ ) and
K0/1(τ ) approach the same value12 for τ → ∞, provided the two cells are not completely
disconnected. In addition, the sums of the symmetry-projected and the group-element-specific
form factors are the same for arbitrary timeτ ,

K0(τ ) +K1(τ ) = K̃+(τ ) + K̃−(τ ). (15)

This identity may be interpreted as a preservation of norm and follows generally from the
unitarity of the matrixχν,n of group characters. Due to (13) it leads to the relation

K0(τ ) +K1(τ ) = KRMT(τ ). (16)

It is instructive at this stage, to consider the trivial limiting cases of two completely isolated or
two very strongly interacting cells, respectively. In the first case, we have from the definitions
(7), (9) and (14)K1(τ ) = 0. Then (13) impliesK0(τ ) = KRMT(τ ), and this is indeed
what is expected within our scaling of time and energy from the fact that the total spectrum
is the superposition of twoidentical random-matrix spectra. In the other extreme, the two
subspectra of positive and negative parity can be considered statistically independent, which
has the consequenceK0(τ ) = K1(τ ) = KRMT(τ )/2.
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4. Semiclassical regime

In order to construct a semiclassical trace formula for the symmetry-projected spectral density
d̃ν(E), equation (6), the concept of periodic orbits has to be extended [25]. In case the dynamics
within the cells has no significant admixture of regular motion, the trace formula reads

d̃(sc)
ν (E) = 1

ih̄N

∑
j

T
(p)
j

κj
√| det(Mj − I )|

χν(gj ) exp

(
i
Sj

h̄
− iµj

π

2

)
. (17)

The sum now runs over generalized period orbitsj . Their end point is not necessarily identical
with the starting point, but must be mapped to it by some group elementgj . The corresponding
term in equation (17) then contains the characterχν(gj ) as an extra, non-classical phase factor.
A correction of the amplitude for orbits that coincide with symmetry lines is effected by
κj [25]. As usual,T (p)j ,Mj , Sj , µj denote primitive period, stability matrix, classical action,
and Maslov index, respectively, of orbitj .

The r̂ole of the generalized periodic orbits becomes even more transparent in the analogous
trace formula for the group-element-specific density,

d(sc)
n (E) = 1

ih̄N

∑
j

T
(p)
j

κj
√| det(Mj − I )|

δ(gj , gn) exp

(
i
Sj

h̄
− iµj

π

2

)
. (18)

The delta function in the second line equals unity if its arguments coincide and vanishes
otherwise. It selects orbitsj whose endpoints are connected bygn. They mediate transport
from the original segment to its image, with the restriction that initial and final points are
exactly related by the symmetry.

The interpretation that spectral quantities associated withgn describe transport from an
original space segment to its image undergn is borne out quite explicitly by the form factors.
A semiclassical expression for theKn(τ) can be derived by substituting into equation (11)
the trace formula (18), Fourier transformed to the time domain as in equation (9). Within the
diagonal approximation with respect to pairs of generalized periodic orbits [1–4,18], which is
valid for timest � tH, one obtains,

K(sc)
n (τ ) = γnτP (gn, τ tH) τ � 1. (19)

Equation (19) relates the form factors to the classical probabilityP(gn, t) to return in time
t to a phase-space point related to the starting point bygn. The contribution of repetitions of
shorter periodic orbits has been neglected in equation (19). By introducing a global degeneracy
factorγn to account for antiunitary symmetries such as time-reversal invariance, we ignored
the occurrence of self-retracing orbits. This factor takes the value 2 if orbits that are periodic
modulogn are generically time-reversal degenerate, and 1 otherwise. A non-trivial dependence
of γn onn can occur, e.g., in periodic systems withN > 3 unit cells [1]. There, time-reversal
invariance is generally broken for orbits with winding numbersn modN 6= 0, N/2, due to
Bloch phases that are not real.

In the spirit of the known classical sum rules for ergodic systems [17], we assume that the
generalized periodic orbits are not distinct from the generic non-periodic ones in their average
spreading. We can then relate theP(gn, t) to the classical propagatorp(r′, r; t) (the integral
kernel of the Frobenius–Perron operator) by a phase-space integration over the fundamental
domain,

P(gn, t) =
∫

fd
dr p(gn(r), r; t) (20)

wherer = (p, q) denotes a phase-space point within the fundamental domain on the energy
shell. In case that the chaotic coverage of the single cells is homogeneous, the classical
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propagator depends ongn but not onr and can thus be expressed by the coarse-grained
probabilities defined in section 2 [1]. In this case the integration in equation (20) becomes
trivial and results in

P(gn, t) = Pn(t). (21)

For the group-element-specific form factors defined for two-cell systems, equation (14), the
semiclassical expression finally reads

K
(sc)
0/1 (τ ) = γ τP0/1(τ tH) (22)

= γ τ

2
(1± e−2λtHτ ) τ � 1. (23)

Here we have used the fact that in symmetric two-cell systems, the degeneracy factorγ does
not depend ongn.

A detailed investigation of the phase-space coverage for a specific double billiard
[29] shows that—for a finite time depending on the special properties of the employed
model—there can be small deviations from the homogeneity assumed in the derivation of
equation (22). Similar restrictions of our theory may arise from the neglect of marginally
stable (bouncing-ball) orbits. However, all the approximations discussed so far are standard
within a semiclassical theory for two-point correlations, and although they cannot be rigorously
justified, they are sufficient to reproduce most of the available numerical data [1–4,18].

The most important limitation in this respect is due to the diagonal approximation for
systems with time-reversal invariance,γ = 2. It is well known that this approximation only
reproduces the slope nearτ = 0 for systems with a single chaotic cell, and it is not surprising
that we observe the same for a two-cell system when we compare (23) with equation (16).
The semiclassical result deviates exactly by the same factorγ τ/KRMT(τ ) known from simple
ergodic systems [18].

In the remaining paragraphs of this section, we briefly discuss the influence of a small
breaking of the symmetry of the two billiard cells. It is clear that the overshoot ofK0(τ )

over its asymptotic value, as described by equation (23), is the result of the symmetry. For an
asymmetric double billiard, this overshoot should vanish altogether, leaving the steeper initial
rise of the form factor implied by equation (23) as the only spectral signature of the restricted
exchange between the cells. However, we expect that there exists a continuous crossover, as a
function of some parameter, that expresses the degree of symmetry breaking.

A semiclassical approach that extends the above arguments to the case of a weakly broken
symmetry has been presented in [36]. It is based on the idea that the contributions of a
given set ofN symmetry-related periodic orbits to the form factor will no longer beN -fold
degenerate, but can still be completely included, without resorting to a diagonal approximation
within this set. The following assumptions have to be made to justify this strategy: (i), the
perturbation is sufficiently weak not to destroy the structural stability of the periodic orbits,
i.e., no periodic orbits disappear or are created, as compared with the unperturbed system;
(ii), only the change,1S, in action has to be taken into account because it appears in the
exponential, while the changes in amplitude and period can be neglected; (iii), the changes
in action result from many statistically independent perturbations of the orbit so that, by the
central limit theorem, they can be considered as Gaussian random variables with zero mean
and variance

〈(1S)2〉 = δ2τ. (24)

The constantδ will serve as the basic parameter for the degree of symmetry breaking. The
proportionality to time reflects the accumulation of squared action changes over the length of
the periodic orbit.
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Under these assumptions, the influence of symmetry breaking can be expressed as an
effective degeneracy relating the form factor for broken symmetry to the corresponding one
for the symmetric system (in the present context, we are left with the ‘symmetry-insensitive’
K0(τ )). For a two-cell system, we find

K
(asym)
0 (τ, δ) = 1

2(1 + e−δ
2τ )K0(τ ). (25)

InsertingK(sc)
0 (τ ) from equation (23), this implies

K
(asym)
0 (τ, δ) = 1

2(1 + e−δ
2τ )(1 + e−2λtHτ ). (26)

Since this result involves the same semiclassical approximations as we made in the derivation
of K(sc)

0 (τ ), its validity is likewise restricted to the short-time regimeτ � 1. Within this
regime, it provides the sought interpolation between the symmetric limit,δ2� 1, and the limit
of totally broken symmetry,δ2 & 1. Due to the assumptions enumerated above, in particular
that of structural stability, we expect equation (25) to also become unreliable in the latter limit.

5. Long-time regime

In the semiclassical time range, we succeeded in expressing the form factors for all parameter
regimes, from two-cell systems without significant separation of the cells to pairs of nearly
uncoupled cells, by a single expression, equation (23). We cannot achieve this generality for
the regime of long timest & tH. The case of weakly coupled (λtH � 1) symmetric billiards,
to be considered here, requires additional input besides the classical information contained in
equation (23). At the same time, this is the most interesting situation because only here do
quasidegenerate doublets occur with a splitting much smaller than their typical separation.

As a starting point for an alternative approach valid in the long-time regime, we return to
the exact definition of the group-element-specific amplitudesa0/1(τ ). Specializing equation (9)
to the two-cell case and inserting the definition (6) ofd0/1(E), we obtain

an(τ ) = 1
2

1∑
ν=0

eπ inν
Nd∑
α=1

e−2π iτrα,ν n = 0, 1. (27)

Here,Nd is the number of doublets in the spectrum, i.e., half the total number of levels. We
have used the fact that the inverse characters for the twofold reflection or translation group
can be concisely written as(χ−1)ν,n = eπ inν , with ν = 0, 1, corresponding to the symmetric
and the antisymmetric representations, respectively. In these representations, returning to the
symbols ‘+’ and ‘−’, rα,0/1 = rα,± = 〈dfd〉Eα,± denote the scaled eigenenergies.

We introduce the concept of doublets by writing the eigenenergies as

rα,± = Rα ± rα. (28)

The long-time limit of the form factors for the canonical random-matrix ensembles is usually
derived under the assumption that the full phasesτr are random forτ � 1. Likewise, here
we assume the analogous phasesτRα contributed by the doublet midpoints to be random in
the long-time limit. Upon squaring the amplitudesã±(τ ) to obtain the corresponding form
factors, this amounts to a diagonal approximation with respect to the indexα,

K0/1(τ ) = 1

2
± 1

2Nd

Nd∑
α=1

cos(4πτrα). (29)

In fact, equation (29) can also be derived if the two-cell system is unrolled to an infinite chain
and the doublets are considered as points of continuous bands, see appendix B.
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If Nd is sufficiently large, we can replace the sum overα by an integral and consider the
integration as a Fourier transformation, to obtain

K0/1(τ ) = 1
2(1± pd(2τ)) (30)

with

pd(τ ) =
∫ ∞

0
dr cos(2πrτ)pd(r). (31)

This is the Fourier transform of the distribution of doublet splittings

pd(r) =
Nd∑
α=1

δ(r − |rα,− − rα,+|). (32)

Forming the difference of the two form factors,

pd(τ ) = K0(τ/2)−K1(τ/2) (33)

we see that this equals the time-domain splitting distribution in its long-time, or equivalently,
low-energy limit. Given that the form factors contain information merely on two-point
correlations irrespective of symmetry, it is actually surprising that they can be related, as
in equation (33), to a quantity that requires an unambiguous identification of doublets. This
can be explained by the fact that we had to assume in the derivation that the midpointsRα of the
doublets are statistically independent of their splittingsrα, which requires a clear separation
of scales between splittings and spacings of doublets. Indeed, equation (33) ceases to be valid
for τ . 1, corresponding to the regime of largerα & 1.

We do not have any semiclassical access topd(r). Nevertheless, in order to make some
progress, we shall resort to results of random-matrix theory on the distribution of resonance
widths, and argue that the doublet splittings obey a similar distribution.

Suppose the channel between the two cells to be replaced by a semi-infinite duct of constant
width, so that two single cells remain, each with a small opening that couples its interior to
the continuum in the duct. This situation is illustrated with a symmetric two-cell billiard in
figure 2. The spectra of the open single cells will then exhibit narrow resonances at roughly the
same energies where the corresponding closed two-cell system shows doublets. It is plausible
that the doublet splittings of the two-cell configuration are related to the resonance widths in
the single-cell setup, at least in a statistical sense. Indeed, this assumption is often made, e.g.,
in nuclear theory, and supported by semiclassical and random-matrix arguments. In short, it
is justified by the fact that both quantities, widths and splittings, can be expressed by the same
wavefunction overlaps and should therefore obey the same distribution.

Figure 2. Two identical scattering systems are obtained when the channel connecting the two
halves of a symmetric two-cell billiard is replaced by a semi-infinite waveguide of constant width.
We argue that small doublet splittings between states of the two-cell billiard correspond to narrow
resonances of the corresponding pair of scattering systems (see text).
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Here we are interested in the case of very few open channels in the connecting section, since
this is required for the formation of narrow doublets. In this limit, we cannot expect random-
matrix theory to remain valid. However, taking the point of view of the scattering approach
to quantization [27], we show in the following paragraphs that there is still a close relation,
though not an exact identity, between the respective distributions of widths and splittings.

We shall specifically consider the wavenumber regime where there is just a single open
channel in the connecting section. This case is realized in the majority of the numerical
examples below. Here, the calculation is particularly straightforward and transparent, because
the scattering in the cell is described by a 1× 1 scattering ‘matrix’ (since there is only one
opening, all incoming waves leave as reflected waves). As we are interested in isolated narrow
resonances, we assume their widths to be small compared with their separations. TheS matrix
can then be written in the form

S(r) = eiθ r − r0 − ig

r − r0 + ig
(34)

wherer0 − ig denotes the position of the resonance pole in the complex energy plane, again
in units of the mean level spacing. The quantization condition in terms ofS(r) is [27]

S(r±) = ±1 (35)

the upper sign referring to the case of symmetric states (subscript ‘+’), the lower one to
antisymmetric states (‘−’). Inserting equation (34) gives the eigenvalues

r+(θ) = r0 + g cotθ/2 (36)

r−(θ) = r0 − g tanθ/2 (37)

for the symmetric and antisymmetric cases, respectively, separated by the splitting

r(θ) = |r−(θ)− r+(θ)| = 2g

| sinθ | . (38)

This function isπ periodic. In the interval 06 θ < π , it has a minimum atθ = π/2, with a
functional valuer(π/2) = 2g. It diverges atθ = 0,π .

This analysis already exhibits the essential facts to be demonstrated: there is a connection
between resonance widths and doublet splittings, but it depends on the unknown value of the
total phaseθ of theSmatrix. As no value ofθ is singled outa priori, we assume equidistribution
of the total phase. Under this condition, the main contribution to the distribution of the splittings
comes fromr & 2g. This is the simple relation between doublet splittings and resonance widths
we seek. Quantitatively, we find the probability density

pd(r|g) = 4g

πr2

(
1−

(
2g

r

)2
)−1/2

(r > 2g) (39)

for the splittings. It is normalized to unity, but its first moment already diverges. Indeed, as
we started from the assumption of small splittings, we cannot expect the result to be valid for
large splittings. The missing cutoff will be given by our semiclassical considerations which
cover the complementary regime of large splittings.

The distributions of wavefunction amplitudes and of resonance widths are among the
established principal results of random-matrix theory [28]. Even if details of their application
to quantum chaotic scattering are still under study, we can, for the present purposes, adopt the
canonical random-matrix results forp(g), the probability density of the resonance widths, and
substitute them to obtain the unconditional splitting distributionpd(r).

Its general relation with the conditionalpd(r|g) andp(g) reads

pd(r) =
∫ ∞

0
dg p(g)pd(r|g). (40)
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In order to return from the energy to the time domain, we perform a Fourier transformation of
pd(r), cf equation (31). Inserting the explicit expression (39) forpd(r|g), we obtain

pd(τ ) = 1

π

∫ 1

0
dx

2√
1− x2

p

(
2τ

x

)
(41)

wherep(τ) = ∫∞0 dg cos(2πgτ)p(g), in turn, is the Fourier transform of the distribution of
resonance widths.

For time-reversal-invariant systems, the resonance widths obey a Porter–Thomas
distribution [28]

pPT(g) = e−g/2〈g〉√
2π〈g〉g . (42)

The integral obtained by inserting the Fourier transform

pPT(τ ) =
√

1 +
√

1 + [4π〈g〉τ ]2

2(1 + [4π〈g〉τ ]2)
(43)

into (41) can be used for a numerical computation of the form factor. In the long-time limit,
from an asymptotic expansion of (43) we find

pd(τ ) = 1

4π

0( 3
4)

0( 5
4)

1√〈g〉τ + O((〈g〉τ)−3/2). (44)

If time-reversal invariance is broken, the resonance widths are exponentially distributed,

pexp(g) = 1

〈g〉e
−g/〈g〉 (45)

pexp(τ ) = 1

1 + (2π〈g〉τ)2 (46)

and accordingly

pd(τ ) = 1

1 + 4π〈g〉τ
√

1 + (4π〈g〉τ)2 + (4π〈g〉τ)2
. (47)

For 〈g〉τ � 1 we findpd(τ )→ (4π〈g〉τ)−2/2.
Note that, for both the exponential and Porter–Thomas distributions, the asymptotic

behaviour of the doublet splittings for large time/small energy is equivalent to the corresponding
resonance-width distribution up to a constant prefactor which relates the mean doublet splitting
to 〈g〉. This constant—it equals 2π02( 5

4)/0
2( 3

4) ≈ 3.44 with and
√

8 ≈ 2.82 without time-
reversal invariance—is somewhat above 2 as anticipated from equation (38).

In figure 3, we compare the Fourier-transformed unconditional splitting distribution
equation (41) in the presence and absence of time-reversal invariance with the corresponding
distribution of resonance widths for〈g〉 = 0.1. We see that for〈g〉τ & 1, the deviation
between the two is not dramatic and conclude that the resonance distributionp(g), Porter–
Thomas or exponential, is the crucial input forpd(τ ), while it is quite robust against changes
and approximations entering viapd(r|g).

Now we return to our main line of reasoning and attempt a matching of the short-time
(large-separation) with the long-time (small-splitting) regime of the form factors. This will
simultaneously allow us to calibrate the as yet undetermined parameter〈g〉 of the resonance
distribution with respect to the classical decay rateλ. We present this calculation only for
the simpler case of broken time-reversal invariance. If time-reversal symmetry is obeyed, the
bad performance of the diagonal approximation at the Heisenberg time makes an analogous
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Figure 3. Time-domain splitting distribution equation (41)
for symmetric two-cell systems with a single open channel
in the connector, in the presence of time-reversal invariance
(upper solid curve) and in its absence (lower solid curve).
For comparison, the broken curves show the Fourier
transforms of the corresponding resonance distributions,
i.e., of the Porter–Thomas distribution equation (43),
above, and of the exponential distribution equation (46),
below. The parameter value common to all curves is
〈g〉 = 0.1.

procedure more problematic. We will discuss this in connection with our numerical results in
sections 6.2 and 6.3.

From the semiclassical side, equation (23), we find at the matching pointτ = 1,

K0/1(1) = 1
2(1± e−2λtH) (48)

while from the long-time side, substituting equation (47) into (30), we have

K0/1(1) = 1

2

(
1± 1

1 + c
√

1 + c2 + c2

)
(49)

introducing the shorthandc = 8π〈g〉. These equations are consistent with one another if

e−2λtH = 1

1 + c
√

1 + c2 + c2
(50)

or, resolving forc,

c = 1− e−2λtH√
e−2λtH(2− e−2λtH)

. (51)

For λtH � 1 (narrow connecting channel or weak coupling), proportionality〈g〉 ≈ λtH/4π
results. It represents a simple relation between the parameter of the quantum mechanical
splitting distribution and the classical timescale of equilibration between the cells.

We state the full time dependence of the form factors in the long-time regime, again using
the abbreviationc for the sake of conciseness,

K0/1(τ ) = 1

2

(
1± 1

1 + cτ
√

1 + c2τ 2 + c2τ 2

)
. (52)

In figures 4(a) and (b), we give a synopsis ofK0/1(τ ) and Y0/1(r) =
∫∞

0 dτ [1 −
K0/1(τ )] cos(2πrτ), respectively, for values of the decay constant ranging fromλ � 1 to
λ ≈ 1. Figure 4 illustrates the crossover of the spectral two-point correlations from the regime
of almost immediate equidistribution between the cells,λ & 1, where the two-point statistics
barely deviates from the corresponding Gaussian orthogonal ensemble (GOE) or Gaussian
unitary ensemble (GUE) prediction (for figure 4, we have chosen the case of broken time-
reversal invariance where the semiclassical approximation to the random-matrix form factor
is exact), to the regime of weak coupling,λ � 1, withK0(τ ) rising to a marked peak near
τ = 1.

6. Models and numerical results

In the following sections, we introduce five quite diverse models that allow one to construct
systems with two coupled compartments. The numerical results obtained for these models
serve to illustrate and check various aspects of the theory developed above.
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Figure 4. Group-element-specific form factors (a), as described by equations (23) and (52), and
corresponding cluster functions (b), for the case of broken time-reversal invariance. (a) The upper
curves showK0(τ ), the lower curvesK1(τ ). (b) The graphs with positive initial slope correspond
to Y0(r), those with negative initial slope toY1(r). From the outmost to the innermost pair of
curves, the decay rate takes the valuesλtH = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0. Graphs of form
factors and cluster functions for equal values ofλtH share a common line signature.

Figure 5. The Z-shaped billiard and the three different families of bouncing-ball orbits.

6.1. The Z-shaped billiard

We construct a two-cell billiard from two quarters of a Sinai billiard [19] and a straight channel
such that the resulting shape resembles the letter Z [29] (figure 5). The width of this channel
will serve as the basic length unit. The remaining parameters of the billiard are then the length
L of the channel and the common radiusR of the quarter-circle sections of the boundary.

Since the billiard boundary consists exclusively of defocusing and neutral components,
the classical dynamics is ergodic and mixing [19]. Hence, we can assume that equation (2)
holds to a good approximation, although for finite time systematic deviations from ergodicity,
e.g., due to the presence of bouncing-ball orbits (figure 5), can be observed. In the following,
we neglect such effects which have been studied in detail in [29].

The employed quantization scheme is described in appendix C. Figure 6 shows a
representative example of a pair of eigenfunctions of the double billiard with quasidegenerate
eigenenergies.

Figure 7 shows a comparison of the various form factors, as defined in section 3, with
random-matrix theory. The energy was restricted by a rectangular window to the region
π < k < 5, corresponding to one open channel in the connecting section of the billiard. In
figure 7, we show the symmetry-projected form factorsK̃+(τ ) ((a),(b)) andK̃−(τ ) ((c),(d)) (cf
equation (12)), as well as the group-element-specific onesK0(τ ) ((e),(f )) andK1(τ ) ((g),(h))
(cf equation (14)), together with the corresponding predictions of random-matrix theory.
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Figure 6. Contour plot of the absolute square of a pair of eigenfunctions of the double billiard with
quasidegenerate energies. The state with even symmetry hask = 3.7569 (top), the antisymmetric
state hask = 3.7576 (bottom). The geometric parameter values areR = 10 andL = 5.

The right-hand column contains blowups of the short-time regime of the data shown on
the left. TheK̃±(τ ) closely follow the GOE prediction for a single cell of the double billiard,
as expected. For short times,K0(τ ) andK1(τ ) deviate significantly from the GOE shape, in
the way predicted by semiclassical considerations. The initial slope ofK0(τ ) is increased by
a factor 2, while that ofK1(τ ) vanishes. However, the amount of data obtained for this model
is too small to allow for a quantitative comparison with the semiclassical theory beyond the
vicinity of τ = 0. Moreover, our numerical quantization procedure did not allow us to go to
parameter values whereλtH . 0.5 such thatK0(τ ) is expected to overshoot nearτ = 1. For the
parameter values underlying the data shown, we haveλtH ≈ 4, so that classical equilibration
between the cells occurs aroundτ ≈ 0.125, cf equation (23).

6.2. The Sinai billiard

Another example of a two-cell billiard is provided by one half of the Sinai billiard as shown
in figure 8. A semicircle of radiusR divides a rectangle with side lengthsLx , Ly , into two
parts connected by an opening of sizes = Ly − R along the symmetry axis. According to
equation (5), the width of this constriction determines the classical rate of transitions between
the two cells in the ergodic regime. The geometry of this billiard differs from that of the system
discussed in the previous section in three respects: the single cells are no longer symmetric in
themselves, there is no extra connecting channel of variable length, and the full configuration
has reflection rather than inversion symmetry. The main advantage is, however, that there exists
a more efficient quantization algorithm [20], again based on the scattering approach [27]. The
reflection symmetry allows one to compute the eigenvalues in the two parity classes separately
by requiring Neumann or Dirichlet boundary conditions along the symmetry axis. We unfold
both spectra using the area and circumference contributions to the mean spectral density of
one cell [30] and arrive at the scaled energy eigenvalues.

Our theory, developed in sections 2–5, is based on spectral two-point correlations that
indiscriminately includeall level pairs in the spectrum. The symmetry-based quantization
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Figure 7. Time evolution of various form factors (heavy curves), compared with random-matrix
theory (broken). The upper two rows show the symmetry-projected form factors ((a)–(d)), the lower
ones the group-element-specific form factors ((e)–(h)). The right column consists of blowups of
the short-time regime of the data shown on the left. The geometric parameter values areR = 5
and〈L〉 = 6.7.

Figure 8. One half of the Sinai billiard consisting of a rectangle and an inscribed semicircle which
divides the system into a reflection-symmetric pair of cells. The numerical data presented in this
section correspond toLx = 2,Ly = 1, ands = 0.05.

procedure used for the present model, by contrast, gives us immediate access to the scaled
eigenvaluesrα,±, presorted according to parity. We take this opportunity to make a few
remarks concerning the ‘genuine’ doublets, i.e., level pairs with identical quantum numberα

but opposite symmetry, and their splittingsrα = rα,− − rα,+. We emphasize again that only in
the regime of small splittings, statistically independent of the positions of the doublet centres,
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Figure 9. Spacings between pairs of unfolded energy eigenvalues with equal quantum number with
respect to a single cell in figure 8 and Dirichlet/Neumann boundary conditions along the symmetry
axis. The vertical lines mark the threshold energies where the first three quantum channels between
the cells open. A running average of the spacings (wavy curve) is compared with the high-energy
approximation (smooth curve).

does the two-point statistics embodied in the form factors coincide with the distribution of
the genuine doublet splittings, cf equation (32). Outside this regime, the two-point statistics
includes separations that are possibly very small but belong to states labelled by different
quantum numbers, and therefore do not contribute to the splitting distribution. In effect, the
two-point statistics is less restrictive and shows more weight at small separations than the
splitting distribution.

Figure 9 shows the individual doublet splittings (dots) and a running average (wavy curve)
as a function of the energy. We observe that the average splitting essentially depends on
the number3 = [ks/π ] of open quantum channels in the constriction. For low energy,
quasidegenerate doublets prevail. In particular, below the threshold energy of the first quantum
channel, we have|r̃α| � 1 for all pairs of eigenvalues. Because of the analogy with actual
tunnel splittings [14], we presume that a semiclassical description of the spectrum in this
regime should include also orbits with complex action including the diffractive orbits studied
in [31]. This question will be investigated elsewhere.

As the energy approaches the opening of the first channel, the mean doublet splitting
increases exponentially, and doublet splittings larger than the mean level spacing accumulate.
Beyond the opening of the second quantum channel, even the average splitting exceeds the
mean spacing. Consequently, for high energy, the notion of doublets becomes irrelevant for
the spectral statistics of the composite system. It is, though, well suited in the regime of, e.g.,
a single open quantum channel, as we show below.

An approximation to the mean value of the doublet spacing is obtained from the asymptotic
expansion of the mean spectral staircasesN̄± of the two subspectra. While the leading
contribution depending on the areaA is the same for both spectra, the second term depends on
the circumferenceu and the boundary conditions. For ¯h = 2m = 1, we have

N̄−(E) = A

4π
E − u

4π
E1/2 N̄+(E) = N̄−(E)− s

2π
E1/2. (53)

With the approximate quantization condition for scaled energy,N̄±(Eα,±) = α + 1
2 [32], this

leads to

|rα| ≈ s
√
r/Aπ (54)
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Figure 10. (a) Form factorsK0/1(τ ) for the two-cell Sinai billiard of figure 8. The smooth solid
curves represent the semiclassical result in diagonal approximation (23), the dashed lines show a
fit to the ansatz (55) which explicitly obeys equation (16). The validity of the sum rule (16) is
demonstrated in (b), where the solid curve represents the GOE form factor.

which is represented by a smooth solid curve in figure 9. We see that for low energy, the
approximation (54) is correct only in the vicinity of the channel openings, while the mean
splitting is approximately constant between the thresholds. Accordingly, taking the value
predicted by equation (54) at the opening of the first channelr = Aπ/4s2 for the entire
subsequent interval until the next threshold, we find that the mean dimensionless doublet
splitting for one open channel is12, independent of the size of the hole. Thus, it is already of
the order of the mean level spacing of the composite two-cell system.

It is an important point that this does not restrict the applicability of our theory: the
high probability of large doublet splittings corresponds to the fact thatpd(r), as obtained
from equation (39), has a diverging first moment. Nevertheless, its Fourier transform is well
behaved. Beyond the Heisenberg time, where we make use of it, it is essentially determined
by the behaviour of the distribution at small spacings. Indeed, figure 9 shows a large number
of doublets with a width well below the mean level spacing, which justifies our approach.

In figure 10(a), we present the form factorsK0/1(τ ) obtained from the 1187 doublets
with one open quantum channel. The size of this interval is a compromise between good
statistics and the necessity to consider an energy interval in which the parameters entering
the semiclassical description—notably the number of open channels and the classical decay
constant—do not change appreciably. For the parameterλtH entering the semiclassical theory
we use the value obtained from equation (5) withk as at the centre of the considered interval.
An effective averaging overτ was achieved by superimposing the form factors obtained after
splitting the available spectrum into small pieces of 30 doublets each, with a rectangular
window.

The dashed curve shows the prediction of the semiclassical diagonal approximation (23),
which correctly describes the behaviour of the form factors for smallτ , but fails close to the
Heisenberg timeτ = 1 as discussed at the end of section 4 in connection with the sum rule
(16). The validity of this relation is demonstrated in figure 10(b). It is interesting to note that
all our data for systems with time-reversal invariance can be fitted very accurately (withλ as
a free parameter) using an ansatz which combines (16) and the semiclassical result (23) into

K0/1(τ ) = KRMT(τ )P0/1(τ tH). (55)

We cannot further substantiate this expression analytically.
Due to the poor outcome of the diagonal approximation in the present case, we cannot

directly determine the mean resonance width from the decay constant by matching (23) and
(30) atτ = 1. Lacking a better semiclassical theory we fit〈g〉 to our data, and we do so in
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Figure 11. Long-time behaviour of the group-element-specific form factors for the two-cell Sinai
billiard. (a) showsK0/1(τ ) together with the prediction according to equation (30). The parameter
〈g〉 was obtained by a fit to the short-time behaviour in the vicinity of the Heisenberg timeτ = 1
(see text). (b) shows the difference of the two form factors, which contains all essential information.

the vicinity of the Heisenberg time. For the fitting we have actually used the fact that (55),
as shown in figure 10, represents our data up to and slightly beyond the Heisenberg time very
well. 〈g〉 was determined as the value for which the long-time expression for the form factor
matches smoothly to this ansatz. We prefer this procedure to a standard least-square fit over a
large time interval, since it emphasizes that the value of〈g〉 is at least implicitly contained in
theshort-timebehaviour of the form factor.

With 〈g〉 obtained in this way, (30) describesK0/1(τ > 1) very well (figure 10). Since
the sum of the two form factorsK0 + K1 is constant according to (16) and figure 10(b), all
information is contained in the difference of the form factors which is shown in figure 11(b).
We regard the good agreement over a very long time as numerical evidence in favour of the
presented theory for the long-time behaviour of the form factor although it contains〈g〉 as a
fit parameter.

6.3. Quantum graphs

In this section we construct and investigate a two-cell system consisting of a quantized graph.
It was recently shown [21] that quantum graphs exhibit the common quantum signatures of
chaos and allow for a formally semiclassical description on the basis of non-deterministic
classical dynamics.

A graph is defined byv = 1, . . . , V vertices and 2B directed bonds connecting them. The
bondb with lengthLb is understood to lead from vertexv(b) to v(b̄), b̄ being the reversed
bond (Lb̄ = Lb). On each bond we use a coordinatexb with xb = 0 atv(b), xb = Lb at v(b̄)
andxb̄ = Lb− xb. The wavefunctionφb(xb) satisfies the Schrödinger equation (¯h = 2m = 1)([

d

dxb

]2

+ k2

)
φb(xb) = 0. (56)

At the vertices, boundary conditions are chosen such that the current is conserved and the
resulting Hamiltonian is self-adjoint and time-reversal invariant. Following the definitions
in [21], we require (i) that the wavefunction is continuous across all vertices, i.e. it has the
same value in all bondsb connected to some vertexv:

φb(0) = ψv=v(b) (57)
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Figure 12. (a) Form factorsK0/1(τ ) for the two-cell quantum graph compared with the
semiclassical diagonal approximation and the ansatz (55) as in figure 10(a). (b) The difference of
the form factors to the theory for the long-time behaviour with the parameter〈g〉 obtained as in
figure 11. The insets show the analogue of figure 11(a) and the topology of the unit cell.

and (ii), that the sum of the momenta in these bonds vanishes:

∑
b

δv,v(b)
d

dxb
φb(0) = 0. (58)

The eigenvalues of the so-defined graphs can easily be found numerically [21]. For the unit
cell, we have interconnectedV = 10 vertices usingB = 20 bonds such that each vertex is the
intersection of exactly four bonds (inset of figure 12(b)). In this case the classical dynamics is
particularly simple: on the bonds, there is free motion at speed 2k and each vertex scatters the
particle into any attached bond with equal probability1

4. On basis of such classical dynamics,
a formally semiclassical quantization can be formulated which turns out to be exact in this
model.

One of the bonds connecting the two pentagonal layers in figure 12(b) was sectioned,
and both ends connected to a second identical unit cell, such that both cells form a ring with
translation invariance in the direction ‘normal’ to the pentagonal layers. The bond lengthsLb
of the unit cell are chosen as random numbers, such that the reflection symmetry is broken.
The total length is normalized according to

∑
b L

B
b=1 = π so that the mean level spacing ink

of the unit cell is unity. Therefore, it is advantageous to use the wavenumberk and the path
lengthL, instead of energy and time, as conjugate variables for the semiclassical description.
The Heisenberg time is thus replaced by the Heisenberg lengthLH = 2π and dimensionless
time is introduced asτ = L/LH. In the ergodic regime, the escape rate from the unit cell
(again with respect to unit path length instead of unit time) is simply given by the inverse total
length of the graph,λ = 1/π .

It is a particularly favourable feature of the model that neither this rate nor the number
of quantum channels connecting the two cells depend on energy. Therefore, we can average
over arbitrarily large energy intervals. We have computed the form factor from the 10 000
lowest doublets after dividing the spectrum into groups of 40 doublets each, with a rectangular
window function. Figure 12 compares the data as in the previous section with the diagonal
approximation, the ansatz (55) and the long-time theory (41). The results correspond to those
for the Sinai billiard but, due the larger amount of data, the agreement with our theoretical
predictions is even closer.
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6.4. The quantum kicked rotor on a torus

The kicked rotor belongs to the class of one-dimensional systems that are rendered classically
chaotic only by a periodic driving. Its phase space is spanned by an angle and an angular-
momentum variable and therefore has the topology of a cylinder. The nonlinearity of the
potential is restricted to its time-dependent component and is controlled by a perturbation
parameter. Accordingly, the classical dynamics crosses over smoothly from integrability to
global chaos with increasing nonlinearity parameter, thereby following the KAM scenario
[33, 34]. The phase space of the kicked rotor is also periodic with respect to its non-cyclic
coordinate, namely along the angular-momentum axis.

Quantum mechanically, the classical angular-momentum period coexists with ¯h as a
second independent action scale. If both are commensurable, then the quantum kicked rotor is
also periodic with respect to angular momentum and can serve as a model for solid-state-like
systems with discrete spatial translation invariance. Since, in the periodic case, the cylindrical
phase space may be regarded as being bent back on itself, this variant of the model is referred
to as the ‘kicked rotor on a torus’. It is this case which we shall discuss below. If the
two angular-momentum periods are incommensurate, the quantum eigenstates are generally
localized. In this case, the kicked rotor provides a model for Anderson localization in disordered
systems [3,22]. We will not consider it here.

The kicked rotor is defined by its Hamiltonian

H(l, ϑ; t) = (l −3)2
2

+ Vα,k(ϑ)
∞∑

m=−∞
δ(t −mτ). (59)

As a consequence of the periodic time dependence, spectrum and eigenstates are adequately
discussed in terms of quasienergies and Floquet states, respectively. In addition, the kicked
rotor may possess two independent twofold antiunitary symmetries, both resembling time-
reversal invariance. In order to break them in a controlled manner, an angular-momentum shift
3 has been introduced, and the potential is chosen as [35]

Vα,k(ϑ) = k
[
cos

(
α
π

2

)
cosϑ +

1

2
sin
(
α
π

2

)
sin 2ϑ

]
. (60)

Here, the global prefactork determines the degree of nonlinearity. The appropriate classical
measure of nonlinearity, however, is the parameterK = kτ . If K � 1, chaotic motion prevails
and angular momentum diffuses without restriction by KAM tori.

The ratio of the classical to the quantum period of action is determined by the parameter
τ/4π . If it is rational, i.e. if τ = 4πp/q with p, q coprime, a unit cell along the angular-
momentum axis arises that accommodatesq quanta of angular momentum. The number of
quasienergy levels per unit cell is then alsoq. We setp = 1 and, in order to avoid an unwanted
symmetry of the unit cell, requireq to be odd.

According to Bloch’s theorem, the spatial periodicity implies the existence of an additional
constant of the motion, the Bloch phaseθ . It appears explicitly in the symmetry-projected
Floquet operator [22],

〈l′|Û (θ)|l〉 = exp

(
−2π i

p

q
(l −3)2

)
1

q

q−1∑
n=0

e−iVα,k([θ+2πn]/q)ei(l−l′)(θ+2πn)/q . (61)

A restriction of the lattice to a finite number ofN unit cells, with cyclic boundary conditions
at the ends, amounts to discretizing the Brillouin zone so that it comprisesN equidistant
valuesθm = 2πm/N ,m = 0, . . . , N − 1, of the Bloch phase. The independent parameterN

corresponds to the number of levels per band; the total number of levels in the spectrum isNq.
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A system with two unit cells is simply constructed by settingN = 2. In contrast to the
systems discussed above, the resulting model does not possess a bottleneck between its two
compartments, neither in configuration space nor in phase space. A reduced exchange between
them therefore comes about solely by slow diffusion. The exchange rateλ is determined by
the diffusion constantD = k2/2 (valid if K � 1) through the simple relationλ = D/(2a2)

derived in appendix A. In the quantum kicked rotor on a torus, the integerq represents the
dimensionless size of the unit cell, to be substituted fora.

The most interesting parameter regime to be studied numerically would be one where
K0(τ ) exhibits a positive peak aroundτ = 1, the feature indicating quasidegeneracy in the
spectrum. For this peak to emerge, the exchange between the cells must be slow. Since there is
no bottleneck in the kicked rotor, this can only be achieved through a small diffusion constant.
More precisely, it requires that the Heisenberg time should be small against the Thouless time.
Measured in units of the discrete time steps of the kicked rotor they are, respectively,nH = q
andnD = N2q2/(πD), so that the condition for quasidegeneracy to occur reads

N2� πk2

2q
. (62)

At the same time, it should be avoided that localization becomes effective even within the unit
cells, in order to separate the signature of classical diffusion from the direct quantal effect of
disorder in the spectrum. The localization length should therefore be kept large compared with
the size of the unit cell,

ξ ≈ k2

4
� q. (63)

Clearly, both conditions, (62) and (63), can hardly be met simultaneously ifN is fixed and
small. WithN = 2, little freedom remains since, in addition, being close to the classical limit
and well within the classically chaotic regime requires bothq andk to be large. We found that
q = 45 andk = 10 represents an acceptable compromise. The resulting diffusion constant,
corrected for oscillations occurring ifK & 1 [33], isD = 23.23. We substitute the Thouless
time τD = nD/q = 2.467 for the time constant 1/(λtH) of the exponential equilibration.

Form factors have been computed, according to equations (9) and (11), using cosine-
shaped windows (χ(x) ∼ 1 + cosx if |x| 6 π ) of width 2π/M, with M = 9, each one
comprising of the order ofqN/M = 10 quasienergy levels. For a general account of spectral
two-point statistics in periodically driven systems with quasienergy spectrum, see appendix A
in [3].

In figures 13(a) and (b), we compare the form factorsK0/1(τ ) and corresponding
cluster functionsY0/1(r), respectively, obtained for the quantum kicked rotor on a torus with
parameters as above, with our theory according to equations (23) and (52). For the evaluation
of the theory, we have used the relations cited to determine the decay rate directly fromq and
k. No fitting was involved. The data cover ten Heisenberg times and thus reach far into the
quantum long-time regime. In the form factors, we can clearly discern the three time domains
discussed: the initial phase of chaotic diffusion whereK0(τ ) is strongly enhanced whileK1(τ )

remains close to zero, the sharp positive peak ofK0(τ ), reaching almost twice the asymptotic
value, and the saturation regime whereK0(τ ) andK1(τ ) approach their common asymptote
from above and below, respectively. The cluster function forr . 1 represents the regime of
long times or small splittings in a different manner. Both plots give evidence that the theory
provides a quantitative description of the two-point correlations over all time/energy scales.
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Figure 13. (a) Group-element-specific form factors as described by equations (23) and (52). (b)
Corresponding cluster functions for the quantum kicked rotor on a torus, compared with the theory
according to equations (23) and (52) (dashed curves). The parameter values areq = 45 andk = 10,
corresponding to an exchange rateλ = 0.258.

6.5. A random-matrix model

In this section, we consider a simple model for a reflection-symmetric double-well system
with chaotic dynamics, with and without time-reversal symmetry, constructed in the spirit
of [11, 12]. It is shown that in certain cases, this model qualitatively reproduces the features
of the form factor discussed in sections 4 and 5.

We consider a Hamiltonian of the form

H =
(
H0 V

V H0

)
(64)

whereH0 represents the internal dynamics of either cell in anN -dimensional Hilbert space,
andV their coupling viaM � N channels of the connecting duct. Note that in contrast to the
models discussed in [9,11,12], we require the two blocks on the diagonal to be identical.

We modelH0 as anN × N random matrix distributed according to Dyson’s Gaussian
ensembles,P(H0) dH0 ∝ exp(−TrH 2

0 /4) dH0. It is assumed thatN → ∞. TheN × N
matrixV has the form

Vkl = δkl N
M

v1

π2
for k = 1, . . . ,M (65)

and zero fork > M. Here,M � N is the number of matrix elements coupling the two wells,
v parametrizes their strength, and1 is the mean level spacing ofH0,1 = π√β/N with β = 1
in the GOE andβ = 2 in the GUE.

The HamiltonianH has a twofold symmetry. Its eigenvalues can be classified according to
parityp and appear as doubletsrα,ν withα = 1, . . . , N andν = ±. According to equation (28),
we writerα,± = Rα ± rα. The form factor is then given by (cf equation (29))

K0/1(τ ) = 1

2
±
〈

1

2N

N∑
α=1

cos(4πτrα)

〉
. (66)

For large times (τ � 1), K0/1(τ ) may be calculated by evaluating the doublet splitting
2rα within degenerate perturbation theory. Denoting the eigenfunctions ofH0 by φα (with
componentsφαν), one has (with〈dfd〉 = 1−1)

rα ' v

π2

N

M

M∑
ν=1

|φαν |2. (67)
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(a) (b)

Figure 14. (a) Form factorK0(τ ) in the GUE for three different values of the coupling strength
(v = 0.5, 1, and 2), and forN = 80 andM = 1 (full curves). Also shown are the theoretical
results, equations (23) and (52) (dashed curves). (b) Form factorK0(τ ) − 1

2 in the GUE for
v = 0.2,N = 80 andM = 1, 2, 6, and 10 (full curves), compared to the asymptotic theoretical
result, equation (71) (dashed curves).

Substituting (67) into (66), it remains to average over the eigenfunctionsφα of H0. The
statistical properties of the eigenfunctionsφα depend on the ensemble considered. In the
GUE, the amplitudeu = N |φαν |2 is distributed according toP(u) = exp(−u). In the GOE,
the corresponding distribution isP(u) = (2πu)−1/2 exp(−u/2).

We first consider the caseM = 1, where the two wells are coupled via a single matrix
element. Forτ � 1, one obtains forK0/1(τ )

K0/1(τ ) ≈ 1
2 ± 1

2

{ 1
4(vτ/π)

−1/2 for β = 1
1/[1 + (4vτ/π)2] for β = 2.

(68)

Forβ = 1, this expression reproduces the long-timeτ−1/2 decay of equation (44). Forβ = 2,
equation (68) reproduces theτ−2 decay for largeτ implied by equation (47).

Forβ = 2, the matching procedure discussed in section 5 yields an analytical expression
forK0(τ ) valid for all timescales. In figure 14(a), we compare this expression (equations (23),
(52)) with results of simulations of the model (64). Shown isK0(τ ) as a function ofτ for an
ensemble of random matrices withN = 80, v = 0.5, 1 and 2 in the GUE (full curves), as
well as equations (23) and (52). The constantv may be determined from〈g〉 by comparison
of equation (68) with (52), wherec = 8π〈g〉.

We find good agreement between the results of the simulations and equations (23), (52).
We have, however, not attempted to evaluate the small-τ behaviour of the form factor for the
model (64) analytically. For largeτ , on the other hand, it is clear that equation (64) is a good
model for the form factor: as pointed out above, equations (68) and (52) coincide for largeτ .

In the present model, it is also possible to consider largerM, 1< M � N . In this case,
for β = 2, the quantity

u = N

M

M∑
ν=1

|φαν |2 (69)

is distributed according to

P(u,M) = MMuM−1e−Mu

0(M)
. (70)
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We requireM � N since, forM = N , one hasu = 1 due to normalization of the
wavefunctions. In the GUE, the form factor is then given by

K0(τ ) ≈ 1

2
+

1

2

∫ ∞
0

du cos

(
4v

π
τu

)
P(u,M)

= 1

2
+

1

2

(
1 +

(
4vτ

πM

)2
)−M/2

cos

(
M arctan

(
4vτ

πM

))
. (71)

ForM = 1, equation (68) is reproduced. For 1< M � N , the form factor does not decay
monotonically forτ > 1 but exhibits oscillatory behaviour (figure 14(b)).

7. Conclusion

Chaotic systems with two weakly connected cells, elementary as this concept may appear, form
a paradigm for a large class of physical situations and exhibit a surprisingly rich behaviour. In
this paper, we have shown that it is essentially determined by two parameters. One of them can
be identified with the time required for the respective populations of the cells to equilibrate. It
specifies the position between the extreme of a large opening that hardly restricts the exchange,
and the opposite one of two almost isolated single cells. The second relevant parameter is a
measure of the difference in shape between the cells, ranging from exact symmetry to its
complete absence.

On the basis of the results obtained in this paper, we can draw a clear picture of the spectral
two-point correlations in this two-dimensional parameter space. In the case of an effective
communication between the cells, the presence or absence of symmetry is of little relevance
for the spectral statistics. It is then only the slight retardation of ergodic coverage that becomes
manifest in the level correlations. The result is a reduction in the area enclosed by the initial
minimum (correlation hole) of the form factor, indicating an increase of randomness in the
spectrum which can be completely accounted for by semiclassical considerations [5].

The case of two almost isolated cells lacking all symmetry can be trivially understood from
a random-matrix point of view. We are then dealing with the superposition of two spectra that
are nearly mutually independent but exhibit the same statistics. Here, random-matrix theory
simply predicts a doubling of the time argument of the form factor [26], in agreement with the
semiclassical approximation in the limit of slow equilibration.

If, in contrast, the two cells are symmetric, the formation of doublets introduces an
additional feature in the spectrum. The corresponding positive correlations are reflected in
the form factor as a maximum in the vicinity of the Heisenberg time. In the limit of long
exchange time, the form factor at this maximum reaches twice the asymptotic value to which it
decays subsequently from above, relative to its value att = 0. In the case of exact symmetry,
we can quantitatively account for this peak in the standard form factor. Simultaneously, there
is a depression in an analogous statistic that refers to transport from one cell to the other, rather
than to return to the initial one.

The crossover from full to completely broken symmetry, as a function of some symmetry-
breaking parameter, can be included in the semiclassical theory if a few plausible additional
assumptions are made. In accordance with corresponding work on spatially periodic systems
with slight disorder [36], this approach implies that the peak in the form factor should decay
exponentially both with the typical difference in action between symmetry-related periodic
orbits in the respective cells, and with time.
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Appendix A. Discrete diffusion

The picture of a two-cell system with the topology of a ring suggests to unroll the ring so
that an infinite chain is formed. If the two cells are translation symmetric, then each of them
represents a unit cell of this periodic lattice, otherwise the unit cell comprises both cells of the
ring. In this extended topology, the condition of slow exchange between the cells implies that
the picture of homogeneous diffusion breaks down on the scale of the lattice constant. We are
therefore in a regime opposite to that considered in [1].

The spreading along the chain is now determined by a master equation for the probability
to be at siten, instead of a diffusion equation for the probability density,

Ṗn(t) = λPn−1(t)− 2λPn(t) + λPn+1(t). (A.1)

In a more concise notation, it reads(
d

dt
− λ12

)
P (t) = 0. (A.2)

Here,P (t) denotes the entire infinite vector of thePn(t), and

12 =



. . .

. . 1 0
1 −2 1

1 −2 1
1 −2 1

0 1 . .

. . .


(A.3)

is the discrete Laplace operator. The lattice plane waves

φm,n = 1√
N

e2π inm/N m = 0, . . . , N − 1 (A.4)

where for the sake of normalizability we have reintroduced cyclic boundary conditions with a
period ofN chain elements, solve the stationary eigenvalue equation

12φm = γmφm (A.5)

with eigenvalues

γm = 2

(
cos

2πm

N
− 1

)
. (A.6)

For a localized initial state

Pn(0) = δn modN = 1√
N

N−1∑
m=0

φm,n (A.7)
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the time evolution reads

Pn(t) = 1√
N

N−1∑
m=0

φm,ne
γmt

= 1

N

N−1∑
m=0

exp

(
2π i

mn

N
+ 2λ

[
cos

2πm

N
− 1

]
t

)
. (A.8)

By Poisson resummation, this becomes

Pn(t) = 1

N

∞∑
m=−∞

∫ N

0
dν exp

(
2π i

[
m +

n

N

]
ν + 2λ

[
cos

2πν

N
− 1

]
t

)
= e−2λt

∞∑
m=−∞

I|n+mN |(2λt) (A.9)

whereIn(z) denotes the modified Bessel function of integer ordern [37]. The spreading over
the lattice, as described byPn(t), represents a discrete diffusion process. If we go to the
continuum limit by definingx = na, L = Na, and letting the lattice constanta → 0, we
recover continuous diffusion with periodic boundary conditions,

p(x, t) = 1

a
Pn(t)→ 1√

2πDt

∞∑
m=−∞

exp

(
− (x +mL)2

2Dt

)
. (A.10)

The diffusion constant isD = 2λa2. In performing the limit, we have used the asymptotic
form of theIn(z) for large argumentz [38] and expanded it for large ordern. The two-cell
solution, equation (2), is retained by settingN = 2 in equation (A.8).

Appendix B. Doublets as discretized bands

As on the level of the classical dynamics, it is instructive to also consider the quantum two-cell
system as the unit cell of an infinite chain. From this point of view, the doubletsrα,± come
about by discretizing continuous bands to a ‘Brillouin zone’ with only two points. The simplest
possible interpolation between these points assumes cosine-shaped bands,

rα(µ) = Rα + rα cos(πµ) µ = 0, 1. (B.1)

Equation (B.1) can be justified by the fact that it imposes no more information on the shape of
the bands than is available, namely their first two Fourier coefficients. Cosine-shaped bands
result also from diagonalizing a tight-binding Hamiltonian with translation invariance. For
two sites this is

H
(α)
n,n′ = Rαδ(n−n′) mod 2 + 1

2rα(δ(n−n′−1) mod 2 + δ(n−n′+1) mod 2) n, n′ = 0, 1. (B.2)

We have defined the parameters of this Hamiltonian in such a way that equation (B.1) gives its
eigenenergies. Inserting them in equation (27) and performing a Poisson resummation results
in

an(τ ) =
∞∑

m=−∞

Nd∑
α=1

e−2π iτRα in−2mJ2m−n(2πτrα) (B.3)

where Jk(z) denotes the ordinary Bessel function of orderk. We introduce a diagonal
approximation with respect to the band indexα, as in section 5, and obtain the corresponding
form factors as

Kn(τ) = 1

Nd

Nd∑
α=1

∣∣∣∣ ∞∑
m=−∞

(−1)mJ2m−n(2πτrα)
∣∣∣∣2. (B.4)
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Invoking the sum rules
∑∞

k=−∞(−1)kJ2k(z) = cosz,
∑∞

k=−∞(−1)kJ2k−1(z) = sinz [39], we
recover equation (29).

Appendix C. Quantization of the Z-shaped billiard

Quantization of a billiard amounts to solving the Helmholtz equation(
∂2

∂x2
+
∂2

∂y2
+ k2

)
ψ(x, y) = 0 (C.1)

with Dirichlet boundary conditions on the billiard circumference and a dispersionk2 =
2mE/h̄2. In this appendix we describe a specific quantization method for the Z-shaped billiard
discussed in section 6.1. It is based on the scattering approach [20,27]. Consider a subdivision
of the closed double billiard into two open halves (figure 2). Each of them represents a
chaotic scatterer attached to the end of a semi-infinite waveguide. Within the waveguide,
quantization of transverse momentum,ky,n = nπ , n = 0, ±1, ±2, . . . , implies that there
areN = [k/π ] ([ . . .] denoting integer part) open channels with real longitudinal momentum
kx,n = (k2− k2

y,n)
1/2, such that the two scatterers are described byN ×N scattering matrices

S l andSr, respectively.
The secular equation for the eigenvalues of the full billiard then reads

det(I − S l(k)Sr(k)) = 0. (C.2)

In order to construct theS l/r for the billiard halves [27], we start from the 2N × 2N transfer
matrix for a quarter Sinai billiard open on both sides [2,3],

T s =
(
rt−1r − t rt−1

t−1r t−1

)
. (C.3)

Here,t andr denote theN×N matrices of transmission and reflection amplitudes, respectively.
Due to the spatial reflection symmetry with respect to the diagonal, the two entrances of the
billiard are equivalent.

The transfer matrixT w for a waveguide of lengthL/2 consists of phase factors
exp(±ikx,nL/2) along the diagonal. The letter-Z-like fashion in which the two halves are
assembled is accounted for by a third factorT z with appropriate phases±1 [2, 3] along its
diagonal. It is included in the transfer matrix for one of the sides, e.g.,T l = T eT w, T r = T lT z.

The scattering matrices for the billiard halves closed on one side are obtained fromT l

andT r by requiring incoming and outgoing amplitudes to cancel across the openings where
Dirichlet boundary conditions are to be enforced,(

+A
−A

)
= T l/r

(
B

C

)
. (C.4)

Here,A and−A refer to the amplitudes at the ends to be closed, andB andC to the amplitudes
on the opposite sides. The latter are related byC = S l/rB, invoking theS matrices sought
after. Solving for them, one finds

S l/r = −(T l/r
12 + T l/r

22 )
−1(T

l/r
11 + T l/r

21 ). (C.5)

In obvious notation,T l/r
ij , i, j = 1, 2, refer to the fourN × N subblocks of the respective

transfer matrices.
In order to check the quality of the quantization procedure, we compare, in figure C1,

the numerical result for the cumulated eigenvalue density with the Brownell formula [30], for
wavenumbers in the intervalπ < k < 2π , andR = 10. The agreement is satisfactory up to
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Figure C1. The cumulated eigenvalue density of
the double billiard (steps) compared with the Brownell
formula (dashed curve). The geometric parameter values
areR = 10 andL = 10.

k ≈ 5. For larger wavenumbers, quasidegenerate pairs of zeros occur in the secular function
with spacings too small to be resolved by the numerical procedure. We have therefore discarded
data withk > 5. To achieve better statistics in the evaluation of spectral correlations, we have
variedL within an interval1L amounting to a few per cent ofL.
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Utermann R, Dittrich T and Ḧanggi P 1994Phys. Rev.E 49273
[14] Creagh S C and Whelan N D 1996Phys. Rev. Lett.774975
[15] Leyvraz F and Ullmo D 1996J. Phys. A: Math. Gen.292529
[16] Lebœuf P and Mouchet A 1994Phys. Rev. Lett.731360
[17] Hannay J H and Ozorio de Almeida A M 1984J. Phys. A: Math. Gen.173429
[18] Berry M V 1985Proc. R. Soc.A 400229
[19] Sinai Y G 1963Sov. Math. Dokl.4 1818

Sinai Y G 1970Russ. Math. Surv.25137
[20] Schanz H and Smilansky U 1995Chaos Solitons Fractals5 1289

Schanz H 1997 Investigation of two quantum chaotic systemsPhD ThesisLogos, Berlin
[21] Kottos T and Smilansky U 1997Phys. Rev. Lett.794794
[22] Izrailev F M 1990Phys. Rep.196299
[23] Bauer W and Bertsch G F 1990Phys. Rev. Lett.652213
[24] Tinkham M 1964Group Theory and Quantum Mechanics(New York: MacGraw-Hill)
[25] Robbins J M 1989Phys. Rev.A 442128
[26] Bohigas O 1992Chaos and Quantum Physics (Les Houches Lectures LII)ed M-J Giannoni, A Voros and

J Zinn-Justin J (Amsterdam: North-Holland) p 87
[27] Doron E, Smilansky U and Frenkel A 1991PhysicaD 50367



6820 T Dittrich et al

Doron E and Smilansky U 1992Nonlinearity5 1055
[28] Brody T A, Flores J, French J B, Mello P A, Pandey A and Wong S S M1981Rev. Mod. Phys.53385
[29] Koboldt G 1997Diploma ThesisUniversity of Augsburg, unpublished
[30] Baltes H P and Hilf E R 1976Spectra of Finite Systems(Zürich: Bibliographisches Institut)
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