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We report on a hitherto unnoticed type of resonances occurring in scattering from networks (quantum

graphs) which are due to the complex connectivity of the graph—its topology. We consider generic open

graphs and show that any cycle leads to narrow resonances which do not fit in any of the prominent

paradigms for narrow resonances (classical barriers, localization due to disorder, chaotic scattering). We

call these resonances ‘‘topological’’ to emphasize their origin in the nontrivial connectivity. Topological

resonances have a clear and unique signature which is apparent in the statistics of the resonance

parameters (such as, e.g., the width, the delay time, or the wave-function intensity in the graph). We

discuss this phenomenon by providing analytical arguments supported by numerical simulation, and

identify the features of the above distributions which depend on genuine topological quantities such as the

length of the shortest cycle (girth). These signatures cannot be explained using any of the other paradigms

for narrow resonances. Finally, we propose an experimental setting where the topological resonances

could be demonstrated, and study the stability of the relevant distribution functions to moderate

dissipation.
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Narrow resonances are abundant in a large variety of
physical systems, and their immense importance as indi-
cators of long-lived states led to an intensive study of their
properties and origin. The weak effective coupling to the
continuum which underlies their appearance can arise in
various circumstances. Common mechanisms are the exis-
tence of potential or dynamical barriers such as weakly
transmitting optical mirrors in optical Fabry-Perot reso-
nators, dynamical tunneling in systems with a mixed phase
space [1,2], or scarring of quantum states by unstable
trapped orbits [3]. Anderson localization in disordered
systems [4,5] induces narrow resonances not because of
any barriers but because of destructive interference between
multiply scattered waves with random phases while a clas-
sical particle diffuses unhindered through the system. Here,
the resonance parameters depend on the particular reali-
zation of the disorder and must be studied with statistical
methods. Statistical methods are also necessary for studying
resonances which characterize chaotic scattering [6–11],
where fluctuations in the wave functions may lead to ap-
proximate bound states with very low amplitude at the inter-
face between the interior of the system and the continuum.
This inhibits the transition to the exterior, resulting in a long
living state.

Wave propagation on bounded networks (graphs) dis-
plays many features which are typical to quantum chaotic
systems [12,13]. When the networks are connected to
external leads, the resulting scattering parameters fluctu-
ate, much in the same way as expected from the analysis of

chaotic wave scattering in open Hamiltonian systems
[9,10,14,15]. However, in addition to resonances from
randomlike interfering waves, the nontrivial connectivity
is also responsible for the formation of another type of
narrow resonances—the subject of the present note. We
will show that these resonances exist in a large class of
scattering graphs if the graph contains a cycle. We thus
call them ‘‘topological resonances.’’ They have properties
which clearly distinguish them from other mechanisms
leading to narrow resonances: their mark on the distribu-
tions of the resonance parameters cannot be explained by
any of the other paradigms.
The rest of this Letter is organized as follows. The

topological resonances signature will first be illustrated
with some numerical simulations. The underlying theoreti-
cal framework will then be reviewed and used to derive the
observed resonance distributions in simple cases. Finally, a
possible experimental setup is proposed where topological
resonances could be observed.
Numerical illustrations.—The insets of Fig. 1 show two

different networks: a fully connected graph with 4 vertices
(tetrahedron) on the left and a graph with 8 vertices (cube)
on the right. The interior of the graph consists of finite
bonds between vertex pairs (red lines). Infinite leads (gray
lines) are attached to some vertices. Scalar waves propa-
gate freely on the bonds and leads, and at the vertices they
are reflected or transmitted without losses. Thus, one has a
scattering system, which is described by an L� L scatter-
ing matrix SðkÞ.
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Solving the scattering problem numerically with an
incoming wave of unit flux and wave number k, we com-
pute the mean intensity �ðkÞ of the wave function on the
internal edges [see (4) for an explicit definition]. The
resulting distributions

Pð�Þ ¼ lim
K!1

1

K

Z K
�ð�� �ðkÞÞdk; (1)

or rather, their cumulative form Ið�Þ ¼ R1
� Pð�0Þd�0, dis-

play extremal power-law distributions shown in Fig. 1, for
various L values. The simulation summarized in Fig. 1
and further numerical results for other graphs suggest
Ið�Þ � ��� for large � with

� ¼
8<
:

Lþ2
2 for L � C� 1

Cþ1
2 for L � C� 1

; (2)

where C is the number of bonds on the shortest cycle
(girth). The tetrahedron girth is C ¼ 3. Thus, one expects
the exponent to be �L ¼ 1:5 for L ¼ 1 and �L ¼ 2 for
L � 2. On the other hand, for the cube with C ¼ 4 one
expects �1 ¼ 1:5, �2 ¼ 2, and �L ¼ 2:5 for L � 2. This
is indeed borne out by the simulations. The appearance
of the girth suggests a topological origin. It can be shown
both numerically and analytically that the same exponent
� describes the asymptotic behavior of the distribution of
long delay times or short resonance widths, respectively.

The result (2) cannot be explained by the other paradi-
gms for narrow resonances. Indeed, barriers such as almost
perfect mirrors in a Fabry-Perot interferometer lead to a
cutoff for the intensity. Scattering from a disordered system
gives rise to a power law with a fixed exponent �loc ¼ 1
which is independent of the number of channels [4,5].
Random-matrix models for chaotic scattering predict a
power law with an exponent �RMT ¼ Lþ2

2 [6–8], which is

only consistent with (2) if L � C� 1.

We shall now summarize the graph theoretical setting
(including the definition of the class of graphs) where
topological resonances will be rigorously defined, and
Eq. (2) will be derived.
Quantum graphs and topological resonances.—A scat-

tering graph G ¼ fV ; Eg consists of a set of vertices V
and a set of edges E ¼ B [L, whereB is the set of bonds
connecting pairs of vertices and L the set of infinite leads.
The graphs considered here are all of finite cardinality.
We will assume that the graph is connected, has no loops
(each bond connects two different vertices) and each vertex
i has degree (the number of attached edges) di � 2. Thus,
graphs with dangling bonds corresponding to vertices with
d ¼ 1 are excluded. Multiple connections between two
vertices are allowed. Each bond b 2 B has a finite length
‘b 2 ð0;1Þ and a coordinate xb 2 ½0; ‘b� such that xb ¼ 0
and xb ¼ ‘b correspond to the two end vertices. The leads
l 2 L are of infinite length. The coordinate xl 2 ½0;1Þ is
defined such that xl ¼ 0 is the position of the end vertex.
The complex valued wave function on the graph is

written as �¼fc bðxbÞgb2B[fc lðxlÞgl2L�fc eðxeÞge2E.
On each edge the wave function satisfies the Helmholtz

(or stationary free Schrödinger) equation d2c e

dx2e
þ k2c e ¼ 0,

where k > 0 is the wave number. At the vertices the wave

function is continuous and
P

d
e¼1

dc e

dxe
ð0Þ¼0, where the sum

extends over all edges which emanate from the vertex.
These Neumann or Kirchhoff matching conditions are a
standard choice from a wider range of admissible boundary
conditions [16]. At a given wave number the wave function
on any edge has the form

c eðxeÞ ¼ aðe;þÞeikxe þ aðe;�Þe�ikxe ; (3)

where aðe;�Þ and aðe;þÞ are the amplitudes of the two

counterpropagating waves on the edge. The mean intensity
�ðkÞ on the graph is defined by

�ðkÞ ¼ 1

jBj
X

b2B;�¼�
jab;�j2: (4)

If the bond lengths are rationally independent then the
spectrum of the quantum graph is purely continuous with
generalised eigenstates which are bounded everywhere
but are not normalizable. To each value of k > 0 one can
associate a unitary scattering matrix SðkÞ [14] that relates
the outgoing coefficients on the leads to the incoming ones.
Resonances are identified as poles of the scattering matrix
when k is in the upper complex k plane. The (positive)
imaginary part of the wave number at a resonance gives the
decay rate (width). If the bond lengths are changed
continuously so do the positions of the poles of SðkÞ.
When bond lengths become rationally dependent some
poles may move to the real axis indicating the appearance
of a normalizable bound state embedded in the continuum
(see Refs. [17–19]).

FIG. 1 (color online). Tails of the integrated distribution Ið�Þ
for the mean intensity �. Insets show the underlying graphs.
Full lines represent numerical results where L ¼ 1; . . . ; 5 is the
number of the attached lead. Note that the data for L ¼ 2, 3, 4, 5
for the cube consist of more than one line—these correspond to
nonequivalent ways to attach L leads. The dashed lines are
power-law tails ���� with indicated exponents.
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We can now define a topological resonance as a pole
of the scattering matrix that can be moved to the real line
to form a bound state by changing some bond lengths
continuously while the graph connectivity and matching
conditions remain unchanged.

The main statement of this Letter is that for rationally
independent bond lengths a quantum graph as described
above supports topological resonances if and only if it
contains a cycle.

This can be shown following similar ideas as in
Ref. [20]. Let us first consider any scattering graph that
does not contain a cycle. Such a graph is a tree with internal
bonds (connected at both end vertices to other bonds) and
leaves (bonds connected at one end vertex to one or more
leads but not to other bonds). The wave function for a
bound state has to vanish on all the leads in order to be
square integrable. The matching conditions then imply that
the wave function also has to vanish on all the leaves. The
process can now be iterated on the remaining tree, showing
that there are no nonvanishing square-integrable solutions
on a scattering tree graph (of finite cardinality). As a result
there cannot be any topological resonances on a scattering
graph without cycles.

Now let us assume that the scattering graph contains a
cycle and let us show that there are choices for the bond
lengths that lead to bound states which we call topological
bound states. Topological resonances are the remnants of
topological bound states when the latter get mixed with
the continuum by a generic choice of bond lengths. The
mechanism is related to a similar phenomenon for closed
graphs where it explains the structure of scars [20]. Let C
be a cycle in the graph that consists of C ¼ jCj bonds as
shown on the left in Fig. 2. Our assumptions (no loops)
imply C � 2. Now let us construct a bound state on C. We
require that the wave function vanishes exactly outside C.
By continuity all vertices on C are then nodal points.
The wave function for any b 2 C then has to be of the
form� sinðkxbÞ and the matching conditions reduce to the

statement that the wave function and its derivative have to
be continuous along the cycle. This implies the following
two diophantine conditions:

k‘b ¼ nb � � with nb 2 N for all b 2 C; (5)

X
b2C

nb ¼ 2s for some s 2 N: (6)

The above conditions can be satisfied for a discrete
sequence of wave numbers if and only if the bond lengths
on C are rationally dependent. This means that there exists
a unit of length ‘0 > 0 such that ‘b ¼ ib‘0 for some ib 2
N. One finds topological bound states on the cycle for wave
numbers nk0 (2nk0) with n 2 N if

P
b2Cib is even (odd).

The only reason for the existence of such states is the
combination of a topological structure (the cycle) with
destructive interference at the nodes.
A generic (rationally independent) choice of bond

lengths will destroy topological bound states on the cycle
as the conditions (5) and (6) cannot be satisfied exactly.
However, the condition can be satisfied approximately—to
arbitrary precision at appropriate wave numbers. This is
where the destroyed topological bound states leave a mark
in the form of topological resonances.
Let us now show that topological resonances on cycles

indeed lead to the statistical signatures that we observed in
the numerical simulations reported above. For this we
consider a connected scattering graph with girth C � 2
and focus our attention on the corresponding cycle. Each
vertex has two attached bonds which belong to the cycle
and at least one additional attached edge that does not
belong to the cycle (as shown in the left part of Fig. 2).
We will show that the ratio � of the intensity inside the
cycle to the intensity outside has a distribution with a
power-law tail Pð�Þ � ���C�1 with �C ¼ Cþ1

2 . For sim-

plicity we will assume that all vertices on C have the same
degree d ¼ 3 (the calculation for the general case follows
the same steps but is too cumbersome for this note). Since
we only want to compare the intensity inside the cycle to
the intensity on the edges that are adjacent to the vertices
on the cycle we may disregard the rest of the graph and
replace the adjacent edges by leads of infinite length. We
have thus reduced the problem to finding the scattering
solutions for one cycle of length C with one lead at each
vertex. The mean intensity on the cycle is defined as in (4)
where the sum is restricted to bonds on C. Combining the
amplitudes in one vector aC one finds (see Refs. [14,15])

aC ¼ ð1� eik‘=2�CCe
ik‘=2Þ�1eik‘=2�CLb

in
L: (7)

Here, ‘ is a diagonal matrix of size 2C� 2C that contains
each bond length of the cycle twice, bin

L are amplitudes of

incoming waves on the leads such that the mean intensity
outside the cycle is proportional to jbin

Lj2 (flux conservation
ensures that the outgoing waves have the same intensity).
The 2C� 2C matrix �CC and the 2C� C matrix �CL

FIG. 2 (color online). Left: A cycle of length C. Right:
Numerically obtained tail of the integrated distribution Ið�Þ of
the mean intensity for a lossy beam-splitter setup (see inset).

PRL 110, 094101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 MARCH 2013

094101-3



contain scattering amplitudes that can be derived from the
Neumann matching conditions at the vertices. They are
given by

�CL ¼ 2

3

P

1

 !
; �CC ¼ 1

3

2P �1

�1 2PT

 !
; (8)

where P is the permutation matrix for the cyclic permuta-
tion (12 . . .C). The subunitary matrix �CC has one eigen-

value equal to one with the eigenvector v0 ¼
�
1T
C�1T
C

�
T
, where

1C is the C-dimensional vector with unit entries. Bound
states appear whenever

�ðkÞ ¼ eik‘=2�CCe
ik‘=2 (9)

has an eigenvalue equal to one. This happens if eik‘=2 ¼ 1,
which cannot be satisfied for generic (rationally indepen-

dent) bond lengths and k > 0. However, in that case k �
eik‘=2 is an ergodic flow on a C torus and eik‘=2 ¼ 1 defines
a point on the torus that can be approached to arbitrary
precision as k increases [21]. Defining the ratio of inten-
sities as �ðkÞ¼ jaCj2=jbin

Lj2 we may derive a power-law tail

for Pð�Þ ¼ h�ð�� �ðkÞÞik by replacing the spectral aver-
age by a torus average Pð�Þ ¼ ð2�Þ�C

R
dC��ð�� �ð�ÞÞ

where we have replaced the 2C� 2C-matrix eik‘ by a
diagonal matrix ei� that parameterizes the C torus (each
angle �j appears twice). Focusing on the contribution from

a small region around � ¼ 0, where �ð�Þ has an eigen-
value one which dominates the behavior. Second-order
perturbation then yields

�ð�Þ � fð2Þð�̂Þ
��2 þ ½gð2Þð�̂Þ�2 ; (10)

where �� ¼ 1
C

P
C
n¼1 �n and �̂n ¼ �n � ��. The functions

fð2Þð�̂Þ and gð2Þð�̂Þ are (explicitly known [22]) positive

definite quadratic forms in the variables �̂n. This implies
Pð�Þ � ���C�1 with �C ¼ Cþ1

2 .

Coming back to the full graph that contains C as a
subgraph, note that the mean intensity � on the graph
contains a contribution proportional to � from the cycle.
As a consequence the tail of Pð�Þ cannot decay faster than
the tail of Pð�Þ such that �C gives a lower bound for the
exponent �. This is consistent with our numerical findings
(2) if L � C� 1. The exponent � ¼ Lþ2

2 for L < C� 1 is

consistent with the random-matrix approach and can be
derived as a lower bound for the exponent in the present
context following similar ideas [6–8]. Note, however, that
our simulations were performed on regular structures
where the connectivity does not vary strongly and where
at most one lead was connected to one vertex. If we want
(2) to be true in other circumstances we need to redefine L
appropriately. E.g., one may show that if there are many
leads at the same vertex with Neumann matching condi-
tions there is still only one open quantum channel that

couples to the inside of the graph. Moreover, if a graph
has a (possibly large) subgraph that is weakly connected
to the rest (e.g., via a single bridge) then there is only a
small number of channels which connect to the subgraph.
The following definition will take care of these issues.
Consider a connected subgraph H. A vertex v is on the
boundary @H of that subgraph if it is adjacent to at least
one edge inH and at least one edge outsideH. We redefine
L as the minimum of the size (cardinality) of @H over all
connected subgraphs H that contain a cycle and that con-
tain no lead. This reduces to the number of attached leads
for the numerical simulations presented before. With this
definition we conjecture that the result (2) we have found
remains true for generic scattering graphs with Neumann
matching conditions. We have excluded loops as they
always lead to topological bound states that cannot be
destroyed by changing the length of the loop. One may
allow loops if one defines C as the shortest cycle which is
not a loop. Dangling bonds have been excluded because
they lead to a further set of topological resonances on paths
between two vertices with degree one (i.e., between two
vertices with mirrorlike reflection)—(2) will remain cor-
rect if C is redefined appropriately [22]. Let us also men-
tion that measuring the intensity on one point of the graph
will in general give a different but predictable power-law
exponent—they are related to the local topological struc-
ture (e.g., the smallest cycle that contains the point) rather
than the global topology. Only very regular graphs like the
ones we used in Fig. 1 have the same power-law exponent
at every point in the graph (and thus also for the mean
intensity). However, other global quantities which are used
to characterize resonances, such as, e.g., the Wigner delay
time or the resonance widths can be shown to distribute as
the parameter � which was used here to render the theo-
retical discussion more transparent.
The derivation of the exponents (2) made explicit use of

some properties of the Neumann matching conditions. The
derivation can be generalized to other continuous matching
conditions. For noncontinuous matching conditions topo-
logical resonances as defined above can be constructed but
more complex topological features are reflected in the
exponents of the corresponding power laws. In Fig. 2 (right
panel) we give numerical evidence of a topological reso-
nance in a graph structure with matching conditions that
can be realized in a laser experiment using beam splitters
and mirrors. The numerics show a clear power-law distri-
bution with exponent� ¼ 3=2 (dashed line). We have also
included loss (e.g., at the reflection from mirrors)—we
characterize the loss by the parameter � which gives the
fraction of photons which are lost when traveling once
through the whole system. Lossy setups follow the
power-law behavior up to a cutoff that increases as losses
decrease. Reducing losses to � ¼ 10�5 may be within
reach [23], showing that topological resonances may be
observed in experiment.
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The narrow resonances in networks play a very signifi-
cant role in the presence of a nonlinearity as present in
nonlinear optical waveguides or active optical fibers. The
enhanced intensity at a topological resonance amplifies the
nonlinearity to such an extent that the perturbative treat-
ment breaks down and typical nonlinear effects such hys-
teresis appear [24]. A detailed discussion and classification
of topological resonances is now in preparation [22].
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