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Abstract

We study the statistical properties of the scattering matrix associated with generic quantum graphs. The scattering matrix
is the quantum analogue of the classical evolution operator on the graph. For the energy-averaged spectral form factor of
the scattering matrix we have recently derived an exact combinatorial expression. It is based on a sum over families of
periodic orbits which so far could only be performed in special graphs. Here we present a simple algorithm implementing
this summation for any graph. Our results are in excellent agreement with direct numerical simulations for various graphs.
Moreover, we extend our previous notion of an ensemble of graphs by considering ensemble averages over random boundary
conditions imposed at the vertices. We show numerically that the corresponding form factor follows the predictions of
random-matrix theory when the number of vertices is large – even when all bond lengths are degenerate. The corresponding
combinatorial sum has a structure similar to the one obtained previously by performing an energy average under the assumption
of incommensurate bond lengths. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantum graphs have recently attracted a lot of in-
terest [1–9]. A review paper containing a list of ref-
erences to previous work can be found in Ref. [2].
The attention is due to the fact that quantum graphs
can be viewed as typical and simple examples for the
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large class of systems in which classically chaotic dy-
namics implies universal spectral correlations in the
semiclassical limit [10,11]. Up to now we have only
a very limited understanding of the reasons for this
universality. In a semiclassical approach to this prob-
lem, the main stumbling block is the intricate inter-
ference between the contributions of (exponentially
many) periodic orbits [12,13]. Using quantum graphs
as model systems it is possible to pinpoint and iso-
late this central problem. In graphs, an exact trace for-
mula exists which is based on the periodic orbits of
a mixing classical dynamical system [1,2,14]. More-
over, the orbits can be speci�ed by a �nite symbolic
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code with Markovian grammar. Based on these sim-
pli�cations, it is possible to rewrite the spectral form
factor or other two-point correlation functions in terms
of a combinatorial problem [3]. This combinatorial
problem has been solved with promising results for
selected graphs: It was shown that the form factor, en-
semble averaged over graphs with a single non-trivial
vertex and two attached bonds (2-Hydra) coincides
exactly with the random-matrix result for the 2× 2
CUE [3]. In Ref. [7] the short-time expansion of the
form factor for N -Hydra graphs (i.e. one central node
with N bonds attached) was computed in the limit
N → ∞, and in Ref. [8] a periodic-orbit sum was used
to prove Anderson localization in an in�nite chain
graph with randomized bond lengths. In Ref. [9] the
form factor of binary graphs was shown to approach
the random-matrix prediction when the number of ver-
tices increases. In the present paper we develop a gen-
eral method to implement the combinatorial sum on
a computer. Our results are always compared with
direct numerical simulations.
Most of the studies on quantum graphs presented up

to now were done with a �xed set of vertex boundary
conditions at the vertices. In this case, one of the main
premises to �nd spectra following the random-matrix
predictions is that all bond lengths of the graph are
rationally independent. In contrast, we will consider
here also statistical properties of graph spectra aver-
aged over the set of boundary conditions. We show
that in this case, the form factor is in agreement with
the random-matrix theory (RMT) predictions even
when all bond lengths are degenerate. Moreover, we
show that one can express the form factor averaged
over the vertex-scattering matrices as a combinatorial
sum over families of orbits. This sum has the same
structure as obtained in Ref. [3] by performing a spec-
tral average.
This paper is structured in the following way. In the

following Section 2, the main de�nitions and prop-
erties of quantum graphs are given. We concentrate
on the unitary bond-scattering matrix SB which can
be interpreted as a quantum evolution operator on the
graph. Section 3 deals with the corresponding classical
dynamical system. In Section 4, the statistical proper-
ties of the eigenphase spectrum of the bond-scattering
matrix SB are analyzed and related to the periodic
orbits of the classical dynamics. Finally, our conclu-
sions are summarized in Section 5.

2. Quantum graphs: basic facts

We start with a presentation and discussion of the
Schr�odinger operator for graphs. Graphs consist of V
vertices connected by B bonds. The valency vi of a
vertex i is the number of bonds meeting at that vertex.
The graph is called v-regular if all the vertices have
the same valency v. When the vertices i and j are con-
nected, we denote the connecting bond by b= (i; j).
The same bond can also be referred to as b̃ ≡
(Min(i; j);Max(i; j)) or /b ≡ (Max(i; j);Min(i; j))
whenever we need to assign a direction to the bond.
A bond with coinciding endpoints is called a loop.
Finally, a graph is called bipartite if the vertices can
be divided into two disjoint groups such that any ver-
tices belonging to the same group are not connected.
Associated to every graph is its connectivity (ad-

jacency) matrix Ci;j. It is a square matrix of size V
whose matrix elements Ci;j are given in the following
way

Ci;j = Cj; i =

{
1 if i; j are connected;

0 otherwise:

For graphs without loops the diagonal elements of C
are zero. The connectivity matrix of connected graphs
cannot be written as a block diagonal matrix. The
valency of a vertex is given in terms of the connec-
tivity matrix, by vi =

∑V
j=1 Ci;j and the total number

of undirected bonds is B= 1
2

∑V
i; j=1 Ci;j.

For the quantum description we assign to each bond
b= (i; j) a coordinate xi; j which indicates the po-
sition along the bond. xi; j takes the value 0 at the
vertex i and the value Li; j ≡ Lj; i at the vertex j while
xj; i is zero at j and Li; j at i. We have thus de�ned
the length matrix Li; j with matrix elements di�er-
ent from zero, whenever Ci;j 6= 0 and Li; j = Lj; i for
b= 1; : : : ; B. The wave function 	 contains B com-
ponents	b1 (xb1 ); 	b2 (xb2 ); : : : ; 	bB(xbB) where the set
{bi}Bi=1 consists of B di�erent undirected bonds.
The Schr�odinger operator (with ˜= 2m= 1) is de-

�ned on a graph in the following way: On each bond
b, the component 	b of the total wave function 	 is
a solution of the one-dimensional equation

(
−i d
dx

− Ab
)2
	b(x) = k2	b(x): (1)



T. Kottos, H. Schanz / Physica E 9 (2001) 523–530 525

We included a “magnetic vector potential” Ab (with
R (Ab) 6= 0 and A.b =−A/b ) which breaks the time re-
versal symmetry. In most applications we shall assume
that all the Ab’s are equal and the bond index will be
dropped. On each of the bonds, the general solution of
Eq. (1) is a superposition of two counter-propagating
waves

	b=(i; j) = ai; jei(k+Ai; j)xi; j + aj; iei(k+Aj; i)xj; i : (2)

The coe�cients ai; j form a vector a ≡ (a.b1 ; : : : ; a.bB ;
a/b1 ; : : : ; a/bB)

T of complex numbers which uniquely
determines an element in a 2B-dimensional Hilbert
space. This space corresponds to “free wave” solu-
tions since we did not yet impose any conditions
which the solutions of Eq. (1) have to satisfy at the
vertices.
The most general boundary conditions at the

vertices are given in terms of unitary vj × vj
vertex-scattering matrices �( j)l;m(k), where l and m
go over all the vertices which are connected to j. At
each vertex j, incoming and outgoing components of
the wave function are related by

aj; l =
vj∑
m=1

�( j)l;m(k)e
ikLjmam;j; (3)

which implies current conservation. The particular
form

�( j)l;m =
2
vj

− �l;m (4)

for the vertex-scattering matrices was shown in
Refs. [1,2] to be compatible with continuity of the
wave function and current conservation at the ver-
tices. Eq. (4) is referred to as Neumann boundary
conditions.
Stationary states of the graph satisfy Eq. (3) at each

vertex. These conditions can be combined into

a = SB(k)a; (5)

such that the secular equation determining the eigenen-
ergies and the corresponding eigenfunctions of the
graph is of the form [1,2]

det[I − SB(k; A)] = 0: (6)

Here, the unitary bond-scattering matrix

SB(k; A) = D(k;A)T (7)

acting in the 2B-dimensional space of directed bonds
has been introduced. The matrices D and T are given
by

Dij; i′j′(k; A) = �i; i′�j; j′eikLij+iAi; jLij ;

Tji;nm = �n; iCj; iCi;m�
(i)
j;m: (8)

T contains the topology of the graph and is equiv-
alent to the complete set of vertex-scattering matri-
ces, while D contains the metric information about the
bonds.
It is instructive to interpret the action of SB on an

arbitrary graph state 	 as its time evolution over an
interval corresponding to the mean bond length of the
graph such that

a(n) = SnBa(0); n= 0; 1; 2; : : : : (9)

Clearly the solutions of Eq. (5) are stationary with
respect to this time evolution. n in Eq. (9) represents a
discrete (topological) time counting the collisions of
the particle with vertices of the graph.

3. Periodic orbits and classical dynamics on graphs

In this section we discuss the classical dynamics
corresponding to the quantum evolution (9) implied
by SB. To introduce this dynamics we employ a Li-
ouvillian approach, where a classical evolution opera-
tor assigns transition probabilities in a phase space of
2B-directed bonds [1,2]. If �b(t) denotes the probabil-
ity to occupy the (directed) bond b at the (discrete)
topological time t, we can write down a Markovian
Master equation of the form

�b(t + 1) =
∑
b′
Ub;b′�b′(t): (10)

The classical (Frobenius–Perron) evolution operator
U has matrix elements

Uij;nm = �j;nP
( j)
i→m (11)

with P(i)ji→ij′ denoting the transition probability be-
tween the directed bonds b= (j; i) and b′ = (i; j′). To
make the connection with the quantum description, we
adopt the quantum transition probabilities, expressed
as the absolute squares of matrix elements of SB

P(i)j→j′ = |�(i)j; j′(k)|2: (12)
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Note that P(i)j→j′ and U do not involve any metric in-
formation on the graph. In general, they may depend
on the wave number k.
The unitarity of the bond-scattering matrix SB guar-

antees
∑2B

b=1 Ub;b′ = 1 and 06Ub;b′61, so that the to-
tal probability that the particle is on any bond remains
conserved during the evolution. The spectrum of U is
restricted to the interior of the unit circle and �1 = 1
is always an eigenvalue with the corresponding eigen-
vector |1〉= 1

2B (1; 1; : : : ; 1)
T. In most cases, the eigen-

value 1 is the only eigenvalue on the unit circle. Then,
the evolution is ergodic since any initial density will
evolve to the eigenvector |1〉 which corresponds to a
uniform distribution (equilibrium). The rate at which
equilibrium is approached is determined by the gap
to the next largest eigenvalue. If this gap exists, the
dynamics is also mixing. Graphs are one-dimensional
and the motion on the bonds is simple and stable. Er-
godic (mixing) dynamics is generated because at each
vertex, a (Markovian) choice of one out of v directions
is made. Thus, chaos on graphs originates from the
multiple connectivity of the (otherwise linear) system
[1,2].
Despite the probabilistic nature of the classi-

cal dynamics, the concept of a classical orbit can
be introduced. A classical orbit on a graph is an
itinerary of successively connected directed bonds
(i1; i2); (i2; i3); : : : . An orbit is periodic with period n
if for all k, (in+k ; in+k+1) = (ik ; ik+1). For graphs with-
out loops or multiple bonds, the sequence of vertices
i1; i2; : : : with im ∈ [1; V ] and Cim;im+1 = 1 for all m
represents a unique code for the orbit. This is a �nite
coding which is governed by a Markovian grammar
provided by the connectivity matrix. In this sense,
the symbolic dynamics on the graph is Bernoulli.
This analogy is strengthened by further evidence:
The number of n-PO’s on the graph is 1=n trCn,
where C is the connectivity matrix. Since its largest
eigenvalue �C is bounded between the minimum and
the maximum valency i.e. min vi6�C6max vi, peri-
odic orbits proliferate exponentially with topological
entropy ≈ log�C .

4. The spectral statistics of SB

We consider the matrix SB(k; A) de�ned in Eqs. (7)
and (8). The spectrum consists of 2B points ei�l(k) con-

�ned to the unit circle (eigenphases). Unitary matrices
of this type are frequently studied since they are the
quantum analogues of classical, area preserving maps.
Their spectral 
uctuations depend on the nature of the
underlying classical dynamics [15]. The quantum ana-
logues of classically integrable maps display Poisso-
nian statistics while in the opposite case of classically
chaotic maps, the eigenphase statistics conform with
the results of RMT for Dyson’s circular ensembles.
To describe the spectral 
uctuations of SB we consider
the form factor

K(n=2B) =
1
2B

〈|tr SnB|2〉 (n¿ 0): (13)

The average 〈: : :〉 will be speci�ed below. RMT
predicts that K(n; 2B) depends on the scaled time
�= n=2B only [15], and explicit expressions for the
orthogonal and the unitary circular ensembles are
known [16].
Using Eqs. (7) and (8) we expand the matrix prod-

ucts in tr SnB and obtain a sum of the form

tr SnB(k) =
∑
p∈Pn

Apei(kLp+Alp): (14)

In this sum p runs over all closed trajectories on the
graph which are compatible with the connectivity ma-
trix and which have the topological length n, i.e., they
visit exactly n vertices. For graphs, the concepts of
closed trajectories and periodic orbits coincide, hence
Eq. (14) can also be interpreted as a periodic-orbit
sum. FromEq. (14) it is clear thatK(n=2B) = 0 as long
as n is smaller than the period of the shortest periodic
orbit. The phase associated with an orbit is determined
by its total (metric) length Lp =

∑
b∈p Lb and by the

“magnetic 
ux” through the orbit. The latter is given
in terms of its total directed length lp if we assume for
simplicity that the magnitude of the magnetic vector
potential is constant |Ab| ≡ A. The complex amplitude
of the contribution from a periodic orbit by the prod-
uct of all the elements of vertex-scattering matrices
encountered

Ap =
np∏
j=1
�(ij)ij−1 ;ij+1 ≡

∏
[r; s; t]

(�(s)r; t )
np(r; s; t); (15)

i.e., for �xed boundary conditions at the vertices, it is
completely speci�ed by the frequencies np(r; s; t) of
all transitions (r; s)→ (s; t). Inserting Eq. (14) into
the de�nition of the form factor we obtain a double
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sum over periodic orbits

K(n=2B) =
1
2B

〈 ∑
p;p′∈Pn

ApA
∗
p′

× exp {ik(Lp − Lp′) + iA(lp − lp′)}
〉
:

(16)

This will be our starting point for the combinatorial
approach presented in the following subsection.

4.1. Energy average

In previous works [3,7,8] the average in Eq. (16)
was always taken with respect to the wave number
k and, if present, also over the magnetic vector po-
tential A. Within the present subsection we will stick
to this procedure. Provided that the bond lengths
of the graph are rationally independent and that
a su�ciently large interval is used for averaging,
only terms with Lp = Lp′ and lp = lp′ survive. A
completely equivalent result can be obtained by re-
garding the bond lengths Lb of the graph as random
numbers and performing an ensemble average over
them.
Note that Lp = Lp′ does not necessarily imply p=

p′ or that p;p′ are related by some symmetry because
there exist families L of distinct but isometric orbits
which can be used to write the result of (16) in the
form [3,7,8]

K(n=2B) =
∑

L∈Fn

∣∣∣∣∣ ∑p∈L

Ap

∣∣∣∣∣
2

: (17)

The outer sum is over the setFn of families, while the
inner one is a coherent sum over the orbits belonging
to a given family (=metric length). Eq. (17) is exact,
and it represents a combinatorial problem since it does
not depend anymore on metric information about the
graph (the bond lengths).
Let us illustrate the application of Eq. (17) in

the following simple system: We consider a Hydra
graph with four arms and impose Neumann boundary
conditions at the central node such that forward and
backward scattering amplitudes are given according
to Eq. (4) by �f = 1

2 and �b =− 1
2 . For the moment

we require that there are two pairs of identical bond

Fig. 1. Form factor of SB for a double-loop graph (or equivalently
S2B for a 4-Hydra). The full line shows Eq. (18) corresponding to
zero magnetic �eld in the loops or two pairs of degenerate bond
lengths in the Hydra as shown in the inset. Dashed line (obtained
from Eq. (20)): A magnetic 
ux threads the loops and is averaged
over. This corresponds to four incommensurate bond lengths of
the Hydra graph.

lengths LA; LB (see Fig. 1). Since Hydra is a bipartite
graph, an orbit can return only after an even number
of vertex-scattering events (note that the dead ends of
the arms are considered as vertices). It is then conve-
nient to replace the scattering matrix in Eq. (13) by
S2B. As one can see from Eq. (14), that the form factor
obtained in this way is equivalent to the one obtained
from a graph which is formed by two loops of lengths
2LA and 2LB connected by a single vertex (inset of
Fig. 1). Consider now the periodic orbits contributing
to K(n=2B). The length of such an orbit is given by
L= nALA + nBLB where nA, nB denotes the num-
ber of traversals of A and B loop, respectively, and
n= nA + nB. If LA; LB are rationally independent,
a family of isometric orbits in Eq. (17) contains all
orbits sharing nA, nB. These orbits di�er, however, in
their symbolic code by the order of A’s and B’s and
by the orientation in which the loops are traversed.
This is re
ected in the amplitudesAp of the orbits: If
two consecutive loops AA have di�erent orientation,
the amplitudeAp contains a factor �b, while the same
orientation results in �f. Di�erent loops following
each other (AB or BA) always result in a factor �f.
Suppose now there is an orbit which contains in its
code a sequence of the form · · ·AB1B2Bs · · ·A · · · .
Then there will be another orbit · · ·AB1B′

2B
′
s · · ·A · · ·
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which di�ers from the �rst one by an inversion of the
orientation (denoted by the prime) of all but the �rst
loop B. It is easy to see that the corresponding am-
plitudes cancel. This results in a tremendous simpli�-
cation of the problem: It su�ces in Eq. (17) to keep
track of all trajectories for which the cancellation does
not apply. These are of the form An, Bn; (AB)n=2 or
(BA)n=2, the latter two existing for even n only. Each
orbit An contributes the amplitude 1=2n irrespective
of the orientations of the n loops. On the other hand
there are 2n possibilities to prescribe these orienta-
tions and hence the total contribution from each of the
families An and Bn is 1. There are also 2n trajectories
of the form (AB)n=2 and (BA)n=2, respectively, each
with amplitude ( 12 )

n. However these orbits belong to
the same family nA = nB = n=2, and their amplitudes
must be added coherently in Eq. (17). This results in
the total contribution 4 from this family. After adding
the contributions from the three di�erent families and
normalizing with 2B= 4 we are left with

K(n=2B) =

{ 1
2 n= 1; 3; : : : ;
3
2 n= 2; 4; : : : ;

(18)

which is shown in Fig. 1 with a solid line. Neglect-
ing the point n= 0, the form factor simply oscillates
around the value 1— even within the Heisenberg time
�= n=2B= 1. This is reminiscent of the behavior of a
Poissonian spectrum. The reason for this lack of cor-
relations is that there exist regular sequences of eigen-
states which are completely con�ned to one of the two
loops or one pair of degenerate bonds, respectively.
These states disappear when all arms of the Hydra are
incommensurate, and the corresponding form factor
(dashed line in Fig. 1) clearly re
ects this change in
the properties of the spectrum.
The arguments which led to Eq. (18) are deceiv-

ingly simple. In general, the combinatorial problem
(17) is very hard and cannot be solved in closed
form. Even for the 4-Hydra with incommensurate
bond lengths this seems to be the case. Nevertheless
exact result for �nite n as those shown in Fig. 1
with a dashed line can always be obtained from
Eq. (17) using a computer algebra system such as
Maple [18]. This will be shown in the following.
To prescribe topology and boundary conditions, one
should provide the time evolution operator SB ac-
cording to Eq. (7) but with the phases eikLi; j left as

unspeci�ed variables. For example, the operator SB
for the graph discussed above has the form



−1=2�A 1=2�A 1=2�B 1=2�B
1=2�A −1=2�A 1=2�B 1=2�B
1=2�A 1=2�A −1=2�B 1=2�B
1=2�A 1=2�A 1=2�B −1=2�B


 ;

where �A=B = ei2kLA=B . In the general case there will
be as many phases �i as there are incommensurate
lengths in the graph. The quantity tr SnB can now be
represented as a multivariate polynomial of degree n
in the variables �i, i.e.,

tr SnB =
∑
Pn

cP�
p1
1 �

p2
2 : : : ; (19)

wherePn runs over all partitions of n into non-negative
integers n= p1 + p2 + · · · : The form factor is then
simply given as

K(n=2B) =
∑
Pn

|cP|2: (20)

The task of �nding the coe�cients cP can be expressed
in Maple [18] with standard functions, such that after
the initialization of SB the following four simple lines
represent a completely general algorithm for the exact
computation of the form factor of an arbitrary graph

sn : = evalm(Sˆn);

tn : = expand(trace(sn)) :

c : = [coe�s(tn)];

K : = sum(c[p]ˆ2; p = 1 : :nops(c));

In practice, however, the computation is restricted
to the �rst few n since the numerical e�ort grows expo-
nentially fast. In Fig. 2, we compare the results of Eq.
(20) with direct numerical averages for regular (fully
connected) graphs with V = 4 and 5 vertices with and
without magnetic �eld breaking the time-reversal sym-
metry. The results agree indeed to a high precision.
Although this could be regarded merely as an addi-
tional con�rmation of the numerical procedures used
in Refs. [1,2], we see the main merit of Eq. (20) in
being a very useful tool for trying to �nd the solution
of Eq. (17) in closed form.
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Fig. 2. Form factor of SB for regular graphs with V = 4 vertices
(top) and V = 5 vertices (bottom). In the right panels an additional
magnetic �eld destroyed time-reversal symmetry. Circles: exact
results obtained from Eq. (17). Stars: numerical average over 2000
values of k. The solid line is to guide the eye. The prediction of
the appropriate random matrix ensemble are shown with dashed
lines.

4.2. Ensemble average over the boundary conditions
at vertices

In the present section we generate an ensemble of
graphs by randomizing the vertex-scattering matrices
�(i). The length matrix L which contains the lengths
of the bonds and the connectivity matrix (topology of
the graph) are kept constant. Moreover all the bond
lengths are equal Lb = 1. We computed the form fac-
tor for fully connected graphs. Our results for values
of V = 10; 15; 20 are presented in Fig. 3. The RMT
two-point form factor [16] is also displayed in Fig. 3
for comparison. The results show quite a good agree-
ment with the predictions of RMT for the circular
ensembles. Moreover, one can see that as the number
of vertices V increases, the agreement with RMT be-
comes progressively better. The deviations from the
smooth curves are not statistical, and cannot be ironed
out by further averaging. Rather, they are due to the
fact that the graph is a dynamical system which can-
not be described by RMT in all detail.
In the remainder of this subsection, we would like

to point out the possibility for turning Eq. (16) into
a combinatorial problem using the ensemble-average
over �(i). We assume that �(i) i = 1; : : : ; V are inde-
pendent random matrices chosen from the CUE. In

Fig. 3. The form factor of the eigenphase spectrum of SB for
fully connected graphs with V = 10; 15; 20. Bold dashed lines are
the expectations for the COE and CUE expressions. The data are
averaged over realizations of the �’s, as explained in the text. All
the bond lengths are kept constant and equal to Li:j = 1.

this case, the averaging in Eq. (16) factorizes with re-
spect to the vertices and we �nd

〈ApA
∗
p′〉=∏

s

〈∏
[r; t]
(�(s)r; t )

np(r; s; t)(�(s)∗r; t )
np′ (r; s; t)

〉
:

(21)

Averages over the CUE of this type have been com-
puted in the literature, see e.g. Ref. [17]. The result is
of the form

〈Ua1 ;b1 : : : Uan;bn × Ua1 ;b1 : : : U�n;�n〉CUE

=
∑
P;P′
CP−1P′

n∏
j=1
�aj;�P( j)�bj;�P′( j) ; (22)

where P; P′ run over the permutations of 1; : : : ; n and
CP−1P′ are some constants which can be obtained from
a recursion relation. Applied to Eq. (21) this implies,
that the contribution from a pair of orbits p;p′ van-
ishes unless for all s; t

∑
r np(r; s; t) =

∑
r np′(r; s; t)∑

r np(r; s; t) =
∑

r np′(r; s; t), i.e., unless the frequen-
cies of traversals of any directed bond s→ t coincide
forp andp′. For the case of a graph with time-reversal
symmetry, i.e., when the vertex-scattering matrices
are taken at random from the COE, a similar result
ensures that only those pairs of orbits survive the av-
eraging in Eq. (21) which agree in the traversals of all
undirected bonds. This means that the family struc-
ture underlying the set of periodic orbits is exactly the
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same as in the case of a graph with incommensurate
bond lengths but �xed boundary conditions: The fam-
ilies are formed by those orbits which di�er only in
the time order of the traversed bonds. Substituting this
result into Eq. (16) we see that all oscillating phases
containing metric information on the graph drop inde-
pendent of the precise values of the bond lengths and
we are indeed left with a combinatorial problem.

5. Conclusions

In this paper we have tried to contribute to the
understanding of the statistical properties of the uni-
tary quantum time evolution operator derived from
quantum graphs. This problem is relevant since it is
a paradigm for the yet unanswered question precisely
under which conditions the quantum analogues of
classically chaotic systems are universal and follow
the random-matrix predictions. Fully connected quan-
tum graphs show this universality when the number of
bonds becomes large. In extension to previous work,
we have demonstrated this result in the case where an
ensemble of graphs is introduced by randomizing the
boundary conditions at the vertices. The correspond-
ing ensemble average can replace the previously con-
sidered spectral average, and the RMT results are in
this case approached even when all the bond lengths
are incommensurate. We have the hope that this
kind of ensemble average might provide an easier
access to an analytical treatment of the spectral pro-
perties of graphs. One possible approach of this goal is
the use of combinatorial methods to perform the
periodic-orbit sums related to spectral two-point cor-
relations.
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