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Abstract
We connect quantum compact graphs with infinite leads, and turn them into
scattering systems. We derive an exact expression for the scattering matrix, and
explain how it is related to the spectrum of the corresponding closed graph. The
resulting expressions allow us to get a clear understanding of the phenomenon
of resonance trapping due to over-critical coupling with the leads. Finally,
we analyse the statistical properties of the resonance widths and compare our
results with the predictions of random matrix theory. Deviations appearing due
to the dynamical nature of the system are pointed out and explained.

1. Introduction

Quantum graphs of one-dimensional wires connected at nodes were introduced more than half
a century ago to model physical systems. Depending on the envisaged application the precise
formulation of the models can be quite diverse and ranges from solid-state applications to
mathematical physics [1–12]. Lately, quantum graphs have also attracted the interest of the
quantum chaos community because they can be viewed as typical and yet relatively simple
examples for the large class of systems in which classically chaotic dynamics implies universal
correlations in the semiclassical limit [13–22]. To date we have only a limited understanding of
the reasons for this universality, and quantum graph models provide a valuable opportunity for
mathematically rigorous investigations of the phenomenon. In particular, for quantum graphs
an exact trace formula exists [12–14] which is based on the periodic orbits of a mixing classical
dynamical system. Moreover, it is possible to express two-point spectral correlation functions
in terms of purely combinatorial problems [16–20] and to use this in order to investigate the
origin of the connection between random matrix theory (RMT) and the underlying classical
chaotic dynamics.
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By attaching infinite leads at the vertices, we get non-compact graphs, for which a
scattering theory can be developed [23–25]. The quantum scattering matrix for such systems
can be written explicitly, and the corresponding resonances can be calculated easily. It is the
purpose of this paper to review their statistical properties and analyse their dependence on the
boundary conditions that we impose at the vertices [26–28]. At the same time we apply the
reaction-matrix formalism and for the first time we give a semiclassical interpretation of this
theory in terms of the classical trajectories of the graph.

The paper is structured in the following way. In section 2, the mathematical model is
introduced and the main definitions are given. Section 3 is devoted to the derivation of the
scattering matrix for graphs. In section 4 we discuss the relation between the S-matrix of an
open graph and the spectrum of the corresponding closed system (reaction-matrix formalism).
The resonance width distributions for various types of graph are presented and discussed in
section 5 and deviations from RMT predictions [26–28] are analysed. In the same section we
also exhibit and analyse the phenomenon of resonance trapping occurring in specific graphs.
Our conclusions are summarized in section 6.

2. Quantum graphs: definitions

We start by considering a compact graphG. It consists of V vertices connected by B bonds. The
number of bonds which emanate from each vertex i defines the valency vi of the corresponding
vertex (for simplicity we will allow only a single bond between any two vertices). The graph
is called v-regular if all the vertices have the same valency v. The total number of bonds is
B = (1/2)

∑V
i=1 vi . Associated with every graph is its connectivity matrix C . It is a square

matrix of size V whose matrix elements Ci, j take the values 1 if the vertices i, j are connected
with a bond, or 0 otherwise. The bond connecting the vertices i and j is denoted by b ≡ (i, j),
and we use the convention that i < j . It will be sometimes convenient to use the ‘time
reversed’ notation, where the first index is the larger, and b̂ ≡ ( j, i)with j > i . We shall also
use the directed bonds representation, in which b and b̂ are distinguished as two directed bonds
conjugated by time reversal. We associate the natural metric to the bonds, so that xi, j (x j,i)

measures the distance from vertex i ( j) along the bond. The lengths of the bonds are denoted
by Lb and unless stated otherwise we shall assume that they are rationally independent. The
mean length is defined by 〈L〉 ≡ (1/B)

∑B
b=1 Lb and in all numerical calculations below it

will be taken to be 1. In the directed-bond notation Lb = Lb̂. Finally, we define the total
length of the graph L = ∑B

b=1 Lb.
The scattering graph G̃ is obtained by adding leads which extend from M(� V ) vertices

to infinity. For simplicity we connect at most one lead to any vertex. The valency of these
vertices increases to ṽi = vi + 1. The M leads are denoted by the index i of the vertex to which
they are attached while xi now measures the distance from the vertex along lead i .

The Schrödinger operator (with h̄ = 2m = 1) is defined on the graph G̃ in the following
way: on the bonds b, the components �b of the total wavefunction � are solutions of the
one-dimensional equation

(
−i

d

dx
− Ab

)2

�b(x) = k2�b(x), b = (i, j) (1)

where Ab (with Re(Ab) �= 0 and Ab = −Ab̂) is a ‘magnetic vector potential’ which breaks
the time reversal symmetry. In most applications we shall assume that all the Ab are equal and
the bond index will be dropped. The components of the wavefunctions on the leads, �i(x),
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are solutions of

− d2

dx2
�i(x) = k2�i(x), i = 1, . . . ,M. (2)

At the vertices, the wavefunction satisfies boundary conditions which ensure current
conservation. To implement the boundary conditions, the components of the wavefunction
on each of the bonds b and the leads i are expressed in terms of counter-propagating waves
with a wavevector k:

On the bonds: �b = abei(k+Ab)xb + cbei(−k+Ab)xb

On the leads: �i = Ii e−ikxi + Oi eikxi .
(3)

The amplitudes ab, cb on the bonds and Ii , Oi on the lead are related by




Oi

ai, j1
·

ai, jvi


 = �(i)




Ii

c j1,i

·
c jvi ,i


 , �(i) =



ρ(i) τ

(i)
j1

· τ
(i)
jvi

τ
(i)
j1

σ̃
(i)
j1, j1

· σ̃
(i)
j1, jvi· · · ·

τ
(i)
jvi

σ̃
(i)
jvi , j1

· σ̃
(i)
jvi , jvi


 . (4)

These equalities impose the boundary conditions at the vertices. The vertex scattering matrices
�
(i)
j, j ′ , are ṽi × ṽi unitary symmetric matrices, and j, j ′ go over all the vi bonds and the lead

which emanate from i . The unitarity of �(i) guarantees current conservation at each vertex.
On the right-hand side of (4), the vertex scattering matrix �(i) was written explicitly in

terms of the vertex reflection amplitude ρ(i), the lead-bond transmission amplitudes {τ (i)j }, and

the vi × vi bond–bond transition matrix σ̃ (i)j, j ′ , which is sub unitary (|det σ̃ (i)| < 1), due to the

coupling to the leads. Vertices which are not coupled to leads have ρ(i) = 1, τ (i)j = 0, while

the bond–bond transition matrix σ̃ (i)j, j ′ is unitary.
Graphs for which there are no further requirements on the �(i) shall be referred to as

generic. In this case the vertex scattering matrices �(i) are chosen from the ensemble of
unitary symmetric ṽi × ṽi random matrices, as explained in [19]. However, often it is
more convenient to compute the vertex scattering matrices from the requirement that the
wavefunction is continuous and satisfies current conservation at all vertices [13, 14]. In this
case the resulting �̃(i) matrices read [23]

σ̃
(i)
j, j ′ = (1 + e−iωi )

ṽ
− δ j, j ′ ; τ

(i)
j = (1 + e−iωi )

ṽ
; ρ(i) = (1 + e−iωi )

ṽ
− 1 (5)

whereωi = 2 arctan λi/ṽi k. The parameters 0 � λi � ∞ are free parameters which determine
the boundary conditions. We shall refer to the λi as the vertex scattering potential. The special
case of zero λi corresponds to Neumann boundary conditions. Dirichlet boundary conditions
result fromλi = ∞. A finite value ofλi introduces a new length scale. It is natural, therefore, to
interpret it in physical terms as a representation of a local impurity or an external field [29]. We
finally note that the above model can be considered as a generalization of the Kronig–Penney
model to a multiply connected, yet one-dimensional, manifold.

3. The S-matrix for quantum graphs

It is convenient to discuss first graphs with leads connected to all the vertices M = V . The
generalization to an arbitrarily number M � V of leads (channels) is straightforward and will
be presented at the end of this section.
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To derive the scattering matrix, we first write the bond wavefunctions using the two
representations which are conjugated by ‘time reversal’:

�b(xb) = abei(k+Ab)xb + cbei(−k+Ab)xb

�b̂(xb̂) = ab̂ei(k+Ab̂)xb̂ + cb̂ei(−k+Ab̂)xb̂

= ab̂ei(−k−Ab̂ )xb ei(k+Ab̂)Lb + cb̂ei(−k+Ab̂ )Lb ei(k−Ab̂ )xb .

(6)

Hence,

cb = ab̂ei(k+Ab̂)Lb , ab = cb̂ei(−k+Ab̂)Lb . (7)

In other words, but for a phase factor, the outgoing wave from vertex i in direction j is identical
to the incoming wave at j coming from i .

Substituting ab from equation (7) in (4), and solving for ci, j , we get

ci, j ′ =
∑
r,s

(1 − S̃B(k; A))−1
(i, j ′),(s, j)D(s, j)τ

( j)
s I j

Oi = ρ(i) Ii +
∑

j ′
τ
(i)
j ′ ci j ′

(8)

where 1 is the 2B × 2B unit matrix. Here, the ‘bond scattering matrix’ S̃b is a sub-unitary
matrix in the 2B-dimensional space of directed bonds which propagates the wavefunctions. It
is defined as S̃B (k, A) = D(k; A)R̃, with

Di j,i ′ j ′(k, A) = δi,i ′δ j, j ′eikLi j +iAi, j Li j

R̃ j i,nm = δn,i C j,i Ci,m σ̃
(i)
j i,im .

(9)

D(k, A) is a diagonal unitary matrix which depends only on the metric properties of the graph,
and provides a phase which is due to free propagation on the bonds. The sub-unitary matrix R̃
depends on the connectivity and on the bond–bond transition matrices σ̃ . It assigns a scattering
amplitude for transitions between connected directed bonds. R̃ is sub-unitary, since

|det R̃| =
V∏

i=1

|detσ̃ (i)| < 1. (10)

Replacing ci, j ′ in the second of equations (8) we get the following relation between the
outgoing and incoming amplitudes Oi and I j on the leads:

Oi = ρ(i) Ii +
∑
j ′ jrs

τ (i)r (1 − S̃B(k; A))−1
(i,r),(s, j)D(s, j)τ

( j)
s I j . (11)

Combining (11) for all leads i = 1, . . . , V , we obtain the unitary V × V scattering matrix
S(V ),

S(V )i, j = δi, jρ
(i) +

∑
r,s

τ (i)r (1 − S̃B(k; A))−1
(i,r),(s, j)D(s, j)τ

( j)
s . (12)

Finally, a multiple-scattering expansion for the S-matrix is obtained by substituting

(1 − S̃B(k; A))−1 =
∞∑

n=0

S̃n
B (k; A) (13)

into equation (12). The expansion (13) converges absolutely on the real k-axis since for generic
graphs the spectrum of S̃ is strictly inside the unit circle (or else, for k+iε, with ε > 0 arbitrarily
small).

The scattering matrix can be decomposed into two parts S(V )(k) = 〈S(V )〉k + S f l(k)
which are associated with two well separated timescales of the scattering process. 〈S(V )〉k

can be evaluated by averaging term by term the S-matrix resulting from the substitution of
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the multiple-scattering expansion (13) in (12). Since all terms, but for the prompt reflections,
are oscillatory functions of k, they average to zero (we assume that the k-window over which
the averaging is performed is sufficiently large, i.e. larger than 2π/Lmin) and thus we get that
〈S(V )〉k = SD = δi, jρ

(i). The fluctuating component of the S matrix, S f l(k), starts by a
transmission from the incoming lead i to the bonds (i, r) with transmission amplitudes τ (i)r .
The wave gains a phase ei(k+Ab)Lb for each bond it traverses and a scattering amplitude σ̃ (i)r,s at
each vertex. Eventually the wave is transmitted from bond (s, j) to lead j with an amplitude
τ
( j)
s . Explicitly,

S(V )i, j = δi, jρ
(i) +

∑
t∈Ti→ j

Bt ei(klt +�t ) (14)

where Ti→ j is the set of the trajectories on G̃ which lead from i to j . Bt is the amplitude
corresponding to a path t and is given by the product of all vertex-scattering matrix elements
encountered along t . The length and directed length of the path are lt = ∑

b∈t Lb and
�t = ∑

b∈t Lb Ab, respectively. Thus the scattering amplitude S(V )i, j is a sum of a large number
of partial amplitudes, whose complex interference brings about the typical irregular fluctuations
of |S(V )i, j |2 as a function of k.

We finally comment that the formalism above can be easily modified for graphs where
not all the vertices are attached to leads. If the vertex l is not attached, one has to set
ρ(l) = 1, τ (l)j = 0 in the definition of �(l). The dimension of the scattering matrix is then
changed accordingly.

4. Relations between spectrum and S-matrix

4.1. Secular equation

There exists an intimate link between the scattering matrix and the spectrum of the
corresponding closed graph. It manifests the exterior–interior duality for graphs [13, 23].
The spectrum of the closed graph is the set of wavenumbers for which S(V ) has +1 as an
eigenvalue. This corresponds to a solution where no currents flow in the leads so that the
conservation of current is satisfied on the internal bonds. 1 is in the spectrum of S(V ) if

ζG(k) = det[1 − S(V )(k)] = 0. (15)

Equation (15) can be transformed in an alternative form

ζG(k) = det[1 − ρ]
det[1 − D(k)R]

det[1 − D(k)R̃]
= 0; Ri,r;s, j = R̃i,r;s, j + δr,s

τ
(r)
i τ

(r)
j

1 − ρ(r)
(16)

which is satisfied once

det[1 − D(k)R] = 0. (17)

In contrast to R̃, R is a unitary matrix in the space of directed bonds, and therefore the
spectrum is real. Equation (17) is the secular equation for the spectrum of the compact part of
the graph [13, 14, 23].

4.2. Reaction-matrix formalism

Equation (15) allows us to compute the spectrum of the closed graph from the S-matrix of
the open graph. This relation can be inverted: it is possible to express the S-matrix at an
arbitrary wavenumber k in terms of all eigenvalues and eigenfunctions of the corresponding
closed graph. This is achieved by applying to quantum graphs methods which were developed
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Figure 1. A tetrahedron with a single attached scattering channel (left) is used to illustrate the
reaction-matrix theory for graphs. The empty circle shows an auxiliary vertex with Neumann
boundary conditions which is used for the derivation of equation (20). On the right we compare
the exact phase of the S-matrix of this graph (full curve) to an approximation computed with the
help of equations (18) and (21) from the lowest 500 eigenstates of the graph (dots).

in the context of nuclear physics: Wigner and Eisenbud [30] introduced in the late 1940s the
reaction matrix as a connecting element between a closed and the corresponding scattering
system. The projection-operator formalism of Feshbach [31] allows a systematic separation
of the Hilbert space of a closed system from the embedding scattering system and on this
basis Weidenmüller and co-workers developed a theory expressing the S-matrix in terms of an
effective non-Hermitian Hamiltonian [32] which contains the dynamics of the closed system
and the coupling to the scattering channels. This effective Hamiltonian is the basis for the RMT
results on resonance statistics that we will discuss in the following sections, and therefore it is
important to understand how reaction-matrix theory and the Weidenmüller approach work in
quantum graphs.

In order to achieve this understanding we consider first the Green function G of a closed
graph. It can be defined by the infinite spectral sum

G(xb, xb′ ; k) =
∞∑

n=1


n(xb)

∗
n(xb′)

k2 − k2
n

, (18)

where kn denotes the nth eigenvalue and 
n(xb) the corresponding eigenfunction at distance
xb at bond b. The graph will later be opened by attaching leads to the vertices 1 � j � M on
which we assume Neumann boundary conditions (the boundary conditions at other vertices are
arbitrary). We denote by G j j ′ the values of the Green function on these vertices and introduce
the Hermitian reaction matrix

K j j ′ = kG j j ′. (19)

We will show that K is related to the S-matrix via

K = −i(I − S)−1(I + S), (20)

which is equivalent to

S = −(I + iK )−1(I − iK ). (21)

For technical reasons it is easier to derive equations (20) and (21) in a situation where the
leads are attached to vertices j with valency v j = 1 and Neumann boundary conditions. An
example is shown in figure 1. As long as we consider Neumann boundary conditions this is
no restriction of generality since the length δ of the bond reaching a ‘dead end’ at vertex j in
the closed graph can be arbitrarily small, and it can easily be shown that in the limit δ → 0 the
spectra and eigenfunctions of the graphs with and without the attached arm coincide. Hence,
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after equation (20) is established with the help of auxiliary vertices, these vertices can be
disregarded. Note that due to this construction ρ( j) in equations (12) and (14) is zero: in the
scattering system the vertices to which the leads are formally attached have perfect transmission
and are effectively absent.

There are two independent ways to arrive at equations (20) and (21). The first simply
repeats the corresponding arguments for billiard systems [33, 34]. In fact, the case of a
quantum graph is completely equivalent up to the additional simplification that the attached
leads do not allow for multiple transversal modes. However, here we will follow a different
route which is more specific to quantum graphs as it relies on the exact representation of the
corresponding S-matrix as a sum over classical trajectories (see equation (14)). There is a
similar expansion of the Green function in terms of classical trajectories

G(x, x ′; k) = 1

2ik

∑
t:x′→x

Bt ei(klt +�t ), (22)

where t denotes a trajectory leading from x ′ to x while Bt , klt , and �t are defined as in
equation (14). Skipping a more mathematical derivation of equation (22) we only point out
the analogy with the well known Green function of a free particle G0 in one dimension,
G0 = (2ik)−1ei|x−x′ |. Equation (22) simply generalizes this expression by adding the additional
paths from x ′ to x which are due to the multiply connected nature of the graph.

Let us now consider the specific matrix elements G j j ′ of the Green function equation (22),
which appear in the definition of the reaction matrix equation (19). It is our goal to represent
them in terms of the scattering trajectories contributing to the S-matrix element Sj j ′ according
to equation (14). To this end we note that the contribution of each trajectory is the same in the
two expressions up to an overall factor (2ik)−1 appearing in the Green function. However, the
set of contributing trajectories is different: in the open system we haveρ( j) = 0 meaning that no
backscattered trajectories from the auxiliary vertices 1 � j � M contribute, while in the closed
graph such trajectories do exist. In order to also get their contributions from equation (14)
we consider multiple scattering at the graph with scattering trajectories reinjected an arbitrary
number of times. Then it does indeed become possible to represent all trajectories inside the
closed graph as combinations of scattering trajectories and we find

G j j ′ = (2ik)−1

(
2δ j j ′ + 4

∞∑
n=1

(Sn) j j ′

)
, (23)

where n counts the multiple scattering at the graph. The first term (n = 0) corresponds to the
zero-length trajectories from j to j . Note that G j j ′ actually denotes the limit of G(x, x ′; k) as
x → j and x ′ → j ′ and that there are always two options to reach a point in the vicinity of
a vertex j : with or without preceding scattering at this vertex. Combining these options for
j and j ′ gives the prefactor 4 (2 for n = 0) in equation (23). After summing the geometric
series in equation (23) we arrive at equation (20).

Not only have we established in this way an analogue of the well known reaction-matrix
formalism for quantum graphs, we have also given the first semiclassical interpretation of this
theory: our derivation of equation (20) was entirely based on comparing the contributions of
classical trajectories summing to an S-matrix element or the Green function, respectively.

In figure 1 we demonstrate numerically how equation (21) can be used to compute the
S-matrix of a scattering graph from its corresponding closed analogue. For the tetrahedron
graph (see the figure) we computed the lowest 500 eigenvalues and eigenfunctions and using
equations (18) and (21) we obtain an approximation for the S-matrix of the graph (see the
circles). For simplicity we consider the case M = 1 where the S-matrix reduces to a single
phase. The resulting data are in excellent agreement with the exact result (solid curve)
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calculated from equation (12). We verified that the comparison is equally successful for
multiple leads and other types of graph.

We continue by deriving the effective Hamiltonian for a quantum graph. To this end we
rewrite equation (19) in the standard form

K j j ′ = π

∞∑
n=1

W ∗
n, j

I

k2 − k2
n

Wn, j ′ , (24)

where

Wn, j (k) = √
k/πψn, j (25)

denotes the coupling of the internal level n to the scattering lead j . We see from equation (25)
that these coupling constants are proportional to the internal eigenfunction at the point where
the lead is attached, as should be expected. Following [28] we can now use some algebra to
rewrite equation (21) in the form

S = I − 2π iW † I

E − H
W, (26)

where the S-matrix is expressed in terms of an effective Hamiltonian H, which has in the
eigenbasis of the graph the matrix elements

Hnn′ = k2
nδnn′ − iπ(W W †)nn′ . (27)

Note that this Hamiltonian depends on energy via equation (25). Whenever this dependence
can be neglected, equation (27) can be diagonalized to find the resonance poles. In this regime,
the predictions of RMT for the statistical properties of the resonances [26–28] are applicable.

5. Statistical properties of resonance widths

One of the basic concepts in the quantum theory of scattering are the resonances. They represent
long-lived intermediate states to which bound states of a closed system are converted due to
coupling to continua. On a formal level, resonances show up as poles of the scattering matrix
S(M) occurring at complex wavenumbers κn = kn − i

2�n , where kn and �n are the position
and the width of the resonances, respectively. From (12) it follows that the resonances are the
complex zeros of

ζG̃(κ) = det(1 − S̃B(κ; A)) = 0. (28)

The eigenvalues of S̃B = D(k; A)R̃ are in the unit circle, and therefore the resonances appear
in the lower half of the complex κ plane.

One important parameter that is associated with the statistical properties of resonance
widths is the Ericson parameter defined through the scaled mean resonance width as

〈γ 〉k ≡
〈
�

�

〉
k

(29)

where 〈·〉k denotes spectral averaging and � is the mean spacing between resonances. The
Ericson parameter defines whether the resonances are overlapping (〈γ 〉k > 1) or isolated
(〈γ 〉k < 1).

For relatively small values of the Ericson parameter a perturbation theory can be carried
out in order to evaluate the resonance widths. Indeed, the difference δR = R − R̃ gets smaller
as larger graphs are considered (for graphs with Neumann boundary conditions it is easy to
see that the difference is of order 1/v). That is, the leads are weakly coupled to the compact
part of the graph. To lowest order (δR = 0), the resonances coincide with the spectrum of the
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Figure 2. Poles of the S(V )-matrix for regular Neumann graphs. The exact evaluated poles are
indicated with (◦) while (�) are the results of the perturbation theory (31): (a) V = 5 and v = 4
and (b) V = 15 and v = 14.

compact graph. Let kn be in the spectrum. Hence, there exists a vector |n〉 which satisfies the
equation

D(kn)R|n〉 = 1 |n〉. (30)

To first order in δR, the resonances acquire a width

δκn = −i
〈n|D(kn)δR|n〉

〈n|L|n〉 . (31)

The above equation shows clearly that the formation of resonances is closely related to the
internal dynamics inside the scattering region which is governed by S̃B .

To check the usefulness of equation (31), we searched numerically for the true poles for a
few scattering graphs and compared them with the approximation (31). In figure 2 we show the
comparison for fully connected Neumann graphs with V = 5 and 15 and A = 0. As expected
the agreement between the exact poles and the perturbative results improves as v increases.

5.1. Resonance width distribution

An important feature of the distribution of the resonances in the complex plane can be deduced
by studying the secular function ζG̃(κ). Consider ζG̃(κ = 0). If one of the eigenvalues of the
matrix R̃ (9) takes the value 1, ζG̃(k = 0) = 0 and, because of the quasi-periodicity of ζG̃ , its
zeros reach any vicinity of the real axis infinitely many times. For v-regular Neumann graphs
without magnetic vector potential (A = 0) the matrix R̃ does indeed have an eigenvalue 1,
and therefore the distribution of resonance widths is finite in the vicinity of γ = 0 for these
systems. For generic graphs, the spectrum of R̃ is typically inside a circle of radius µmax < 1.
This implies that the poles are excluded from a strip just under the real axis, whose width can
be estimated by

�gap = −2 ln(|µmax|)/Lmax, (32)
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Figure 3. (a) The 5000 resonances of a single realization of a complete V = 5 graph with A �= 0
and M = V . The solid curve marks the position of the gap γgap. (b) The distribution of resonance
widths P(γ ). The solid curve is the RMT prediction (34). The difference P(γ ) − PCUE(γ ) is
shown in the inset.

where Lmax is the maximum bond length. The existence of a gap is an important feature of the
resonance width distribution P(γ ) for chaotic scattering systems.

A similar argument was used recently in [24] in order to obtain an upper bound for the
resonance widths. It is

�max ∼ −2 ln(|µmin|)/Lmin, (33)

where µmin and Lmin are the minimum eigenvalue and bond length, respectively.
The distribution of the complex poles for a generic fully connected graph with V = 5

is shown in figure 3(a). The vertical line which marks the region from which resonances are
excluded was computed using (32).

RMT can provide a general expression for the distribution of resonances. Specifically,
Fyodorov and Sommers [27, 28] proved that the distribution of scaled resonance widths for
the unitary random matrix ensemble is given by

P(γ ) = (−1)M

�(M)
γ M−1 dM

dγ M

(
e−γπg sinh(γ π)

(γ π)

)
, (34)

where the parameter g = 2
(1−〈SD〉2

k )
− 1 controls the degree of coupling with the channels (and

it is assumed that gi = g ∀i = 1, . . . ,M).
In the limit of M 
 1, equation (34) reduces to the following expression [28]:

P(γ ) =



M

2πγ 2
for M

π(g+1) < γ < M
π(g−1)

0 otherwise.
(35)

It shows that in the limit of large number of channels there exists a strip in the complex κ-plane
which is free of resonances. This is in agreement with previous findings [35–37]. In the case
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Figure 4. (a) Resonance width distribution P(γ ) for fully connected Neumann graphs with
(a) A = 0 and M = V = 5; (b) A �= 0 and M = V = 15. The solid curve is the RMT
prediction (34). In the inset we report the relative ratio �γ/〈γ 〉k versus V for fully connected
graphs with A = 0. As V increases, the distribution is concentrated more around its mean value
and an effective gap is created. The dashed line has slope −0.25 and is the best fit to the numerical
data.

of maximal coupling, i.e. g = 1, the power law (35) extends to infinity, leading to divergences
of the various moments of the γ . Using (34) we recover the well known Moldauer–Simonius
relation [36] for the mean resonance width [28]

〈γ 〉k = −
∑V

i=1 ln(|〈SD〉k |2)
2π

. (36)

The resonance width distribution for a V = 5 regular and generic graph is shown in
figure 3(b) together with the RMT prediction, which reproduces the numerical distribution
quite well. Figure 4 shows a similar comparison for Neumann graphs. In this case, a clear
deviation from the RMT prediction is observed. The main feature of P(γ ) is the relatively
high abundance of resonances in the vicinity of the real axis which is of dynamical nature and
conforms with the expectations (see related discussion above equation (32)).

Although the absence of a gap in a strict sense is apparent in all the Neumann graphs that
we have studied, still one can speak about a gap in a ‘probabilistic’ sense. To show this, we
have calculated the ratio of the resonance width standard deviation �γ with respect to the
mean resonance width 〈γ 〉k for various fully connected graphs. Our numerical data reported
in the inset of figure 4 for various values of V suggest that �γ/〈γ 〉k ∼ 1/V α with α � 0.25.

For g 
 1 (i.e. the weak coupling regime) equation (34) reduces to the following
expression:

P(γ ) = (βM/2)βM/2

〈γ 〉kΓ (βM/2)

(
γ

〈γ 〉k

)βM/2−1

exp(−γβM/2〈γ 〉k), (37)
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Figure 5. The rescaled resonance width distribution P(γ ) for a star graph with v0 = 20 (inset).
The solid curve is the RMT prediction equation (37).

where β = 1 (2) for systems which respect (break) time-reversal symmetry, and Γ (x) is
the gamma-function. We notice that (37) is the so-called χ2-distribution and can be derived
independently using simple perturbation theory [38].

A simple graph that satisfies the weak coupling limit is the Neumann star graph. It consists
of v0 bonds and one lead, all of which emanate from a single common vertex labelled with the
index i = 0. It is a simple matter to derive the scattering matrix S(M=1) which is reduced to a
single phase factor [23]

S(k) ≡ eiφ(k) = − ∑v0
i=1 tan(kLi ) + i

+
∑v0

i=1 tan(kLi ) + i
. (38)

In figure 5 we present our numerical results for P(γ ) for a star graph with v0 = 20. The
data are in excellent agreement with the RMT expectation given in equation (38). We point
out that in this case the coupling to the continuum is weak since g � 10 
 1 and therefore
the χ2-distribution with M = 1 is applicable.

5.2. Resonance trapping in graphs

As mentioned at the end of section 4.2, the effective Hamiltonian equation (27) is in general an
infinite-dimensional and energy-dependent matrix and thus very hard to treat. However, there
are situations where this Hamiltonian can be approximated with good accuracy by a finite and
constant matrix. For example, this is the case when the energy levels of the closed system are
clustered, e.g. by an underlying shell or band structure.

Let us calculate under this assumption the Ericson parameter equation (29) of a group of
N resonances of a graph at large k 
 �. The resonances can be found by diagonalizing H.
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Figure 6. Ring-shaped periodic graph with N = 10 unit cells.

From equation (27) we have for graphs with Neumann boundary conditions

〈γ 〉N = − 1

k N �
Im tr H

= π

k N�

∑
n, j

|Wn, j |2

= M
〈|ψn, j |2〉
�

. (39)

Note that diagonalization of H yields the resonances in the complex energy plane, while we
are interested in the wavenumber κ . This was accounted for in the first line of equation (39).
From the normalization of the eigenfunctions of the graph we deduce that the mean intensity
of an eigenstate is the inverse of the total length L of the graph 〈|ψn, j |2〉 = L−1. Hence, if
� were equal to the mean level spacing of all levels, π/L, the Ericson parameter would be
fixed to 〈γ 〉N ∼ M/π . However, we said above that the effective Hamiltonian can be used
only if there is clustering of levels, meaning that the local mean spacing inside the cluster of N
resonances is � � π/L. Therefore we have in such a situation not only 〈γ 〉N 
 1 but even
γ 
 M .

Theoretical calculations, based on RMT modelling, predict that in this situation the
statistical properties of the resonances change drastically: with increasing strength of the
coupling, M very broad resonances are formed, whereas the remaining N–M approach the
real axis and become long lived (trapped) [37, 39]. This counterintuitive phenomenon, which
was recently demonstrated in experiments on microwave resonators [40] is called ‘resonance
trapping’.

Let us now illustrate this phenomenon for the case of quantum graphs. To this end we
use a graph model consisting of N identical unit cells forming a periodic ring as shown in
figure 6 (we note that our numerical data have already been included in the recent review
by Dittes [33]). Each unit cell consists of four vertices. Two of these vertices are T-shaped
junctions with Neumann boundary conditions (λ = 0). The other two are dead ends where we
impose Dirichlet boundary conditions (λ = ∞). In one of the unit cells the dead ends have
variable boundary conditions 0 � λleads � ∞ and are connected to a scattering channel. As
long as the coupling to the channels is zero (λ = ∞ at all dead ends), the spectrum is organized
in discrete bands, each containing N eigenvalues. These eigenvalues are seen in figure 7 as
intersections of the solid curves with the real axis. We observe that the spacing within the
bands can indeed be much smaller than the spacing between the bands.

As soon as λleads is finite, the eigenstates of the closed system are turned into resonances
with a finite lifetime. In figure 7 we show the motion of resonances in the complex κ-plane as
we increase the coupling constant of the system by decreasing λleads to zero. One can clearly
see the resulting redistribution of the S-matrix poles. For particularly narrow bands, e.g. at
k ∼ 4.2, we do indeed observe two broad resonances with a width several orders of magnitude
above that of the remaining poles, while for the broader bands at least one broad resonance
can be distinguished.
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Figure 7. Trajectories in the complex κ-plane of the resonances of a ring graph with N = 20 unit
cells as λleads falls from ∞ to 0. For the maximum coupling to the two attached scattering channels
(λleads = 0), the location of the resonances is marked by squares.

6. Conclusions

Quantum graphs are used in our days as a paradigmatic model of quantum chaos. By connecting
them with infinite leads one turns them into scattering systems. As a result, a scattering
formalism can be developed, and an exact expression for the scattering matrix can be found.

Due to the relative ease by which a large number of numerical data can be computed for
the graph models, we have performed a detailed statistical analysis of resonance widths. A gap
for the resonance widths has been obtained for ‘generic’ graphs and its absence was explained
for Neumann graphs. Finally, we have shown that the phenomenon of resonance trapping can
also appear in quantum graphs.
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