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We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy
systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs,
are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about
the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are
tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA
cavities.
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Introduction.—Perfect absorption is an interdisciplinary
topic relevant for a broad range of technologies, extending
from acoustics [1–4] and electronic circuits [5–7], to radio
frequencies (rf) [8,9], microwaves [10–13], and optical
frequencies [14–26]. The potential applications range from
energy conversion, photovoltaics, and imaging, to time-
reversal technologies, sensing, and soundproofing. In many
of these applications, either due to cost or design consid-
erations, the requirement is to achieve maximal absorption
from minimal built-in losses. For this goal, new schemes
have been devised that exploit spatial arrangements of
losses, or utilize novel interferometric protocols. One such
approach, called the coherent perfect absorber (CPA) [16],
was recently proposedbased on a time-reversed laser concept.
A CPA is a weakly lossy cavity that acts as a perfect

constructive interference trap for incident radiation at a
particular frequency and spatial field distribution. This
distribution is the time reversal of a lasing mode which the
cavity would emit if the lossy medium is replaced by a gain
of equal strength. Since the outgoing signal is null due to
the destructive interferences between various pathways, the
incoming waves are eventually absorbed even in cases
when a weak absorptive mechanism is employed. What
makes this approach attractive is the recent developments in
wave front shaping of an incident wave [27–29]. Despite
all interest, the existing studies on CPA involve only simple
cavities [1,3,4,7,10,16–26]. Such CPA cavities have been
realized recently in a number of experimental setups,
ranging from optical to rf and acoustic systems [4,7,18].
In this Letter we investigate CPA in a new setup

associated with single chaotic cavities or complex networks
of cavities coupled to the continuum with multiple chan-
nels. The underlying complex classical dynamics of these
systems leads to complicated wave interferences that give
rise to universal statistical properties of their transport
characteristics. A powerful theoretical approach based on
randommatrix theory (RMT) has been developed and it has

been shown that it accurately describes many aspects of
such wave chaotic systems, including the structure and
statistics of spectra and eigenstates or the distribution of
transmittance, delay times, etc. [30–36].
Motivated by this success, we have used an RMT

approach to derive expressions for the energy ECPA and
loss strength γCPA, and quantify the sensitivity of CPA on
the energy and loss-strength detuning. We have also studied
the statistics of (rescaled) γCPA, thus providing a guidance
for an optimal loss-strength window for which a chaotic
CPA can be realized with high probability. Our modeling
allows the possibility of spatially nonuniform absorption,
which might even be localized at a single position. This
feature is relevant for recent metamaterial proposals that
advocate for the novelty of structures with spatially
nonuniform losses (or/and gain) and can be easily realized
in setups like the ones shown in the insets of Fig. 1 below.
Our results are expressed in terms of the modes of the
isolated and lossless system which contain the information
about the (chaotic) dynamics. Specifically, we find that
γCPA depends on a ratio of the absolute value squares of
eigenmode amplitudes at the boundary and in the absorbing
regions of the system. The averaging over the statistics of
eigenmode components results in nontrivial distributions
which differ qualitatively from the well-known resonance
distributions. We have tested the RMT results against
numerical data from actual chaotic systems with nontrivial
underlying dynamics, namely, quantum graphs [Fig. 1(b)]
[37–40]. These models of wave chaos have been already
realized in the microwave regime [41–43]. Losses can be
included in a controllable manner [44] while a detailed
control of the incoming waves in a multichannel setting
can be achieved via IQ modulators [45]. While in this
contribution we concentrated on chaotic CPA traps, our
approach can also serve as a basis for RMT modeling of
CPA disordered diffusive cavities and CPA cavities with
Anderson localization.
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RMT modeling and complex cavity networks.—The
Hamiltonian that describes the isolated (i.e., in the absence
of scattering channels) system is modeled by an ensemble
of N × N random matrices H0 with an appropriate sym-
metry: in the case that the isolated setup is time-reversal
invariant (TRI), H0 is taken from a Gaussian orthogonal
ensemble (GOE), while in the case of broken TRI it is taken
from a Gaussian unitary ensemble (GUE) [46]. Such
modeling describes (in the coupled mode approximation
[47]) complex networks of N coupled cavities, see inset of
Fig. 1. The distances between the cavities are random,
leading to random couplings. In this case, TRI can be
violated via magneto-optical effects. Another physical
system that is described by our modeling is a set of
coupled acoustic chambers or a network of random
LCðRÞ elements. In the latter case the TRI can be violated
via a gyrator [48].
Consider now that some of the cavities contain a lossy

material. In this case the Hamiltonian H of the isolated
system is non-Hermitian and can be modeled as

H ¼ H0 − ιΓ; Γ ¼
X
μ

γμjeμiheμj; ð1Þ

where γμ quantifies the loss in the cavity with index μ and
fjeμig is the basis where H0 is represented (mode space).
For simplicity we will assume in the following that the
losses are concentrated in a single cavity μ ¼ μ0.
The corresponding scattering setup is realized by cou-

pling the isolated system to M channels that extend to
infinity; see Fig. 1. We assume that these leads are
one-dimensional and described by a tight-binding
Hamiltonian Hleads with matrix elements ðHleadsÞnm ¼
tLδm;n�1. They support propagating waves with a
dispersion relation EðkÞ ¼ 2tL cosðkÞ, where k is the wave

vector and tL < 0 (we set tL ¼ −1 below). We further
assume that the cavities where the channels are attached
are lossless.
The scattering properties of the network are described by

the M ×M scattering matrix S which connects incoming
jIi to outgoing jOi wave amplitudes via the relation
jOi ¼ SjIi. It can be expressed in terms of the isolated
system Eq. (1) as

Sðk; γÞ ¼ −1̂þ 2ι
sin k
tL

WT 1

Heffðk; γÞ − EðkÞW; ð2Þ

where 1̂ is the M ×M identity matrix and EðkÞ is the
energy of the incident plane wave [49]. The rectangular
N ×M matrix W contains the coupling between cavities
and channels. We assume Wnm ¼ wδnm. The effective
Hamiltonian is

Heffðk; γÞ ¼ HðγÞ þ eιk

tL
WWT: ð3Þ

Because of the second term the effective Hamiltonian Heff
is not Hermitian even without internal losses, i.e., γ ¼ 0.
Absorption matrix and CPA conditions.—For γ ¼ 0 the

scattering matrix is unitary, S†S ¼ 1̂. For γ ≠ 0, however,
this relation is violated and we introduce the operator
Aðk; γÞ≡ 1̂ − S†ðk; γÞSðk; γÞ ¼ A† as a measure of the total
absorption occurring in the system. For networks with one
lossy cavity, Aðk; γÞ hasM − 1 degenerate zero eigenvalues
while the last eigenvalue is 0 ≤ αðk; γÞ ≤ 1. It corresponds
to an eigenvalue of the scattering matrix sðk; γÞ which is
inside the unit circle, αðk; γÞ ¼ 1 − jsðk; γÞj2. When
αðk; γÞ ¼ 0 the system does not absorb energy, while
αðk; γÞ ¼ 1 indicates complete absorption, i.e., a CPA.
This latter equation can be satisfied only for isolated pairs
ðkCPA; γCPAÞ which are the object of our interest. Note that
unlike scattering resonances, kCPA is real since it has to
support a propagating incoming wave in the attached leads.
The CPA condition αðkCPA; γCPAÞ ¼ 1 is equivalent

to a zero eigenvalue of the scattering matrix, sCPA≡
sðkCPA; γCPAÞ ¼ 0. The corresponding eigenvector jICPAi
identifies the shape of the incident field which will
generate interferences that trap the wave inside the structure
leading to its complete absorption, hICPAjS†ðkCPA;
γCPAÞSðkCPA; γCPAÞjICPAi ¼ 0.
Evaluation of CPAs.—A zero eigenvalue of the scatter-

ing matrix Sðk; γÞ corresponds to a pole of its inverse
matrix, which can be represented as S−1ðk; γÞ ¼ Sð−k; γÞ.
Thus the poles are the solutions of ζðκ; γÞ≡
det ½Heffð−κ; γÞ − EðκÞ� ¼ 0, where κ is complex in gen-
eral, and the CPAs can be found numerically by searching
for the real solutions of this equation, ζðkCPA; γCPAÞ ¼ 0.
Typical examples of the κ evolution as γ increases are
shown in Fig. 1.
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FIG. 1. (a) Parametric evolution of the complex energy zeros of
the scattering matrix for a random network of N ¼ 5 cavities and
M ¼ 3 as γ (green cavity, see inset) increases. The coupling to the
leads is w=tL ¼ 0.15 and the matrix elements of H0 are taken
from a box distribution ½−0.5; 0.5�. At γCPA the zeros cross the
real axis, i.e., ½ReðEÞ; ImðEÞ� ¼ ðECPA; 0Þ. The red circles
indicate the zeros at γ ¼ 0 while the crosses indicate the

eigenmodes Eð0Þ
n of the isolated system H0. (b) The same (in

the complex k plane) for a tetrahedron with N ¼ 4 vertices,
M ¼ 3 leads, and a lossy vertex (green, see inset) in the middle.
The lossless vertices have vertex potential λl̄ ¼ 4π. The bond
lengths are taken from a box distribution [0.5, 1.5].
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We proceed with the theoretical evaluation of CPA
points. We will assume that w ≪ tL. Let us first consider
the relevant limit of weak losses γ ≪ tL. In this case
Eðk; γÞ ≈ E0ðkÞ þ ΔEðk; γÞ, where ΔEðk; γÞ can be found
via first order perturbation theory. The unperturbed
Hamiltonian is H0 and we consider one particular eigen-
value Eð0Þ ≡ Eðkð0ÞÞ and the corresponding eigenvector
jΨð0Þi, i.e., H0jΨð0Þi ¼ Eð0ÞjΨð0Þi. Straightforward first
order perturbation theory, together with the condition that
kCPA has to be real, leads to

cosðkð0ÞÞ
cosðkCPAÞ

¼ 1 −
1

2

�
w
tL

�
2X

m

jΨð0Þ
m j2

γCPA ¼ 1

2
vgðkCPAÞ

�
w
tL

�
2
P

mjΨð0Þ
m j2

jΨð0Þ
μ0 j2

; ð4Þ

where vgðkÞ≡ ∂EðkÞ=∂k ¼ −2tL sinðkÞ is the group

velocity of the incoming wave while Ψð0Þ
m and Ψð0Þ

μ0

represent the components of the wave function jΨð0Þi at
the sites m, μ0, where the leads and the dissipation are
placed, respectively. In the limiting case of M ¼ 1 the
multichannel CPA condition Eq. (4) becomes identical with
the critical coupling (CC) concept between input channel
and loss. This is nothing else than the so-called impedance
matching condition, which once expressed in terms of
losses, indeed states that radiative and material losses must
be equal [50,51]. At the same time, this condition is
noticeably similar to the lasing condition, on exchanging
losses with gain [16].
The accuracy of the perturbative calculation Eq. (4) is

further scrutinized via direct numerical evaluations of
ðkCPA; γCPAÞ. A comparison of the results is shown in
Fig. 2. It is interesting to point out that although our
calculations are applicable in the limit of weak coupling,

nevertheless the agreement of the exact CPA points with the
first order perturbation expressions [Eq. (4)] applies for
w=tL as high as 0.5.
Using Eq. (4) we can now provide a statistical descrip-

tion of the rescaled CPA ~γCPA ¼ 2ðtL=wÞ2½γCPA=
vgðkCPAÞ� ¼

P
m jΨð0Þ

m j2=jΨð0Þ
μ j2. The distribution Pð~γCPAÞ

can be easily calculated using the known results for the
joint probability distribution of the eigenfunction compo-

nents jΨð0Þ
n j2 of a GOE (GUE) random matrix [30–32]. We

get

Pβð~γCPAÞ ¼ N β
~γβðM=2Þ−1
CPA

ð1þ ~γCPAÞβðMþ1Þ=2 ; ð5Þ

where β ¼ 1ð2Þ indicates an isolated system H0 with
preserved (violated) TRI. The normalization constants in
front of the above distribution are N 1 ¼ ð1= ffiffiffi

π
p ÞfΓ½ð1þ

MÞ=2�=ΓðM=2Þg, N 2 ¼ M, and ΓðxÞ is the gamma func-
tion [52].
From Eq. (5) we see that as the number of channels

increases (the system becomes “more open”) a “statistical
gap” is created that suppresses CPAs at small ~γ (i.e., small γ
or/and large velocities vg) strengths. The “gap” is less
pronounced when β ¼ 1, since in this case weak localiza-
tion interferences can support the trapping of the wave
close to the lossy site. An estimation of the CPA gap, based
on the ~γCPA value for which Pð~γCPAÞ change curvature,
leads to ~γCPA ∼ 0.1βM, when M → ∞.
A comparison of Eq. (5) with the numerical data for a

complex network of N ¼ 15 discs and M ¼ 1, 2, 3
channels is shown in Fig. 3(a). A nice agreement is
observed even though the coupling between the resonators
and the leads has a moderate high value w=tL ≈ 0.1. For
~γCPA ≫ 1 [53] the distribution Eq. (5) has a channel-

independent power law shape Pð~γCPAÞ ∼ 1=~γðβ=2Þþ1
CPA . In
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FIG. 2. Theoretical versus numerical values of γCPA=vgðkCPAÞ
for various realizations of a complex network of N ¼ 15 coupled
resonators (solid symbols) and a tetrahedron graph (open sym-
bols), respectively. The number of channels in both cases is
M ¼ 3 and TRI is preserved (β ¼ 1). Various symbols corre-
spond to different coupling constants w=tL for the RMT model
and vertex potentials for the graph.
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FIG. 3. (a) Distribution of the rescaled CPA ~γCPA for a complex
network of N ¼ 15 cavities Eqs. (2), (3). The numerical results
are compared to the RMT prediction Eq. (5). (b) The same for a
tetrahedron graph with λl̄ ¼ 4π at the vertices where the channels
are attached. In both cases TRI is preserved, i.e., β ¼ 1.
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the other limiting case ~γCPA ≪ 1 we have Pð~γCPAÞ∼
~γβðM=2Þ−1
CPA .
Let us now calculate the incident field which can lead

to a CPA. Direct substitution of Eqs. (2), (3) in the
definition of A allows us to rewrite the absorption matrix
in its spectral decomposition form

A¼−4γ
sinðkÞ
tL

jαihαj; jαi¼WT 1

H†
eff −EðkÞjeμ0i: ð6Þ

From Eq. (6) it becomes obvious that the associated
nonzero eigenvalue is αðk; γÞ ¼ −4γ½sinðkÞ=tL�hαjαi.
Obviously, the CPA incident waveform is given by the
eigenvector jαðkCPA; γCPAÞi. Using again first order per-
turbation theory we can write the incident field jαi Eq. (6)
associated with the nondegenerate eigenvalue α ≠ 0 of A in
terms of the eigenvector jΨð0Þi of the isolated systems H0.
Further substitution of jαðkCPA; γÞi and of kCPA in Eq. (4)
for the eigenvalue α gives [54]

αðkCPA; γÞ ¼
4γ=γCPA

ð1þ γ=γCPAÞ2
; ð7Þ

which provides a simple expression of the relative absorp-
tion of the CPA cavity, at kCPA, when jIi ∝ jαðkCPA; γÞi.
Equation (7) dictates that the CPA sensitivity, defined as
half width at maximum, is proportional to γCPA. Similar
analysis, when γ ¼ γCPA, leads to the following expression
for αðk; γÞ [54]:

αðk; γCPAÞ ¼ u
4vgðkÞ=vgðkCPAÞ

½1þ vgðkÞ=vgðkCPAÞ�2
: ð8Þ

Note that the second term in Eq. (8) has the same functional
form as Eq. (7). The additional factor u≡f1þ½cos2kð0Þ=
ðcoskCPA−coskð0ÞÞ2�tan2½ðk−kCPAÞ=2�g−1 indicates that
when kCPA → kð0Þ the absorption eigenvalue αðk; γCPAÞ
diminishes rapidly as k goes away from kCPA.
We now consider the other limit of strong losses where

many of the complex solutions of ζðκ; γÞ ¼ 0 turn back to
the real axis and lead to a second CPA. The existence of
CPAs for large γ is surprising since in the overdamping
domain (i.e., large γ’s) it is expected to have strong
reflections due to impedance mismatching. However,
multiple interferences in complex systems provide a zeros
self-trapping effect which results in the CPAs. This is
analogous to the well-known resonant self-trapping phe-
nomenon, which has been thoroughly studied in other
frameworks [55,56] and it resurfaces also in CPAs [57].
CPAs in chaotic graphs.—RMT addresses universal

aspects of CPAs in complex systems. At the same time
one needs to be aware that certain nonuniversal features
(like scarring) may emerge when CPA cavities with under-
lying chaotic dynamics are considered. These features

might influence the formation of CPAs. Therefore, we test
our theory with a model system, where such effects are
known to be prominent, namely, quantum graphs (networks
of 1D waveguides) [37,38,40].
A graph consists of n ¼ 1;…; V vertices connected by

bonds. The number of bonds emanating from a vertex n is
its valency vn and the total number of directed bonds (i.e.,
discerning b≡ n → m and b≡m → n) is 2B ¼ P

V
n vn.

The length of each bond lb ¼ lb is given by a box
distribution centered around some mean value l, i.e.,
lb ∈ ½l −Wb=2; lþWb=2�. The waves on the bonds satisfy
the Helmholtz equation ðd2Ψb=dx2bÞ þ k2Ψb ¼ 0 (where
k > 0 is the wave number). At the vertices the wave
function is continuous and satisfies the relationPvn

b¼1 dΨb=dxbjxb¼0 ¼ λnΨbð0Þ. The parameters λn repre-
sents a potential concentrated on a vertex and for a lossy
vertex it includes a negative imaginary part −ιγn. We will
restrict the losses to a single vertex μ0 with a purely
imaginary potential −ιγ. Leads are attached to some of the
remaining vertices m ¼ 1;…;M < V, thus changing their
valency to ~vm ¼ vm þ 1. The details for calculating the
M ×M scattering matrix for this system can be found in
Ref. [38]. It can be represented in the form

S ¼ SMM þ SMBð1̂ − SBBÞ−1SBM; ð9Þ

where the 2B × 2B bond-scattering matrix SBBðk; γÞ
describes the multiple scattering and absorption inside
the network, while the other three blocks account for direct
scattering processes and the coupling between the leads and
the network. We follow exactly the same program as for the
RMT modeling and calculate the zeros of the S matrix by
evaluating the poles of its inverse S−1ðk; γÞ ¼ Sð−k; γÞ, i.e.,
by searching for the real solutions of the secular equation
ζðκ; γÞ≡ det ð1̂ − SBBð−κ; γÞÞ ¼ 0. Our numerical data for
the case of a fully connected tetrahedron, with one lossy
vertex and M ¼ 1, 2, and 3 leads attached to the other
vertices are shown in Fig. 1(b) and demonstrate the same
qualitative features as for the RMT model. Also the
analytical evaluation of the CPA points via first-order
perturbation theory parallels the RMT calculation and leads
to the expression

γCPA
vgðkCPAÞ

¼ 1

2

P
mjΨð0Þ

m j2

jΨð0Þ
μ0 j2

; kCPA ≈ kð0Þ; ð10Þ

where Ψð0Þ
m and Ψð0Þ

μ0 denote the values of the unperturbed
wave function at the vertices with attached leads and the
lossy vertex, respectively, and the group velocity for the
graphs is vg ¼ ∂E=∂k ¼ 2k [37]. The universality of this
expression can be further appreciated by realizing its
similarity with Eq. (4) derived in the RMT framework.
Equation (10) has been checked against numerically
evaluated CPA values for a tetrahedron graph; see Fig. 2.
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Finally, we have calculated numerically the distribution
of ~γCPA ≡ 2γCPA=vgðkCPAÞ for graphs. The results for
M ¼ 1, 2, 3 and λl ¼ 4π are shown in Fig. 3(b) and are
compared with the predictions of RMT Eq. (5). Clearly, our
theory is capable of reproducing the main features of the
distribution also for this model, where prominent scarring
effects are known to exist [39,40]. However, the agreement
with Eq. (5) is less convincing for strong coupling to the
leads (λ ¼ 0, not shown), where a nonperturbative
approach is necessary.
Conclusions.—We investigated the distribution of loss

strengths for the realization of a chaotic CPA using a RMT
formalism. In the case of d absorbers one gets a distribution
with power law tails that might even (e.g., for d ¼ 1) not
possess a mean value. This has to be contrasted to the case
of uniform losses where one ends up with a χ2 distribution
with exponentially decaying tails and well-defined mean.
Furthermore, for nonuniform losses we have discovered the
novel effect of its zeros self-trapping, which is absent for
uniform losses. Finally, we evaluated the robustness of CPA
with respect to loss detuning and we found that in the case
of frequency detuning the upper bound for CPA robustness
is controlled by the mean level spacing. The effects of
semiclassical features, like scarring, etc., are a subject of
ongoing research.
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