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Signature of Directed Chaos in the Conductance of a Nanowire
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We study the conductance of chaotic or disordered wires in a situation where equilibrium transport
decomposes into biased diffusion and a countermoving regular current. A possible realization is a
semiconductor nanostructure with a transversal magnetic field and suitably patterned surfaces. We find
a nontrivial dependence of the conductance on the wire length. It differs qualitatively from Ohm’s law by
the existence of a characteristic length scale and a finite saturation value.
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FIG. 1. (a) A prototypical example for directed chaos is a
2DEG in a perpendicular magnetic field which is confined by
two parallel walls with different surfaces. The upper wall reflects
specularly, while at the lower wall the reflection angle is essen-
tially random. Possible physical realizations of this randomness
are magnified in the insets (see text). Typical trajectories are
either regular (dashed line) or random (solid line) and transport
in opposite directions. In (b), the transversal Poincaré sections
for vx > 0 and vx < 0 are displayed.
According to Ohm’s law, the resistance of a wire is
proportional to its length. This is a straightforward conse-
quence of the diffusive motion of electrons in the disor-
dered potential of a normal material. However, unlike the
time when Ohm arrived at his fundamental observation,
conductors can be tailor-made today with almost complete
control over the microscopic structure. Therefore, it is
important to understand the consequences of nondiffusive
electron dynamics on the electronic conductance or other
transport properties. This question has been studied in
much detail for semiconductor nanostructures in which
the motion of electrons is ballistic rather than diffusive
[1–4]. In such systems, disorder is negligible, and, con-
sequently, all transport properties are determined by the
shape of the sample, as in a billiard model. For example, in
the ideal case of a perfectly clean nanowire with parallel
walls, the resistance should be zero independent of the
length, and indeed this remarkable prediction has been
confirmed experimentally [3]. Beside ballistic systems,
the effects of anomalous diffusion on the electronic or
thermal conduction properties have also attracted a lot of
attention [5–7].

In the present Letter, we study the electronic conduc-
tance of a wire in the case of a different and very profound
modification of the microscopic dynamics. We consider
systems where directed chaos leads to biased diffusion in
the absence of any potential gradient. Directed chaos
means that the time-averaged velocity of chaotic trajecto-
ries is nonzero due to broken time-reversal symmetry and
due to the specific phase space structure [8]. This effect
may occur in various types of systems including, e.g., cold
atoms in suitably pulsed optical potentials or chains of
electronic billiards in a transversal magnetic field. It has
been investigated both theoretically and experimentally in
a number of recent publications [9–13]. The interest is due
to some intriguing and potentially very useful properties.
For example, quantities such as velocity average, velocity
dispersion, or scattering delay times are intrinsically de-
pendent on the transport direction. However, all previous
studies focused on the ratchetlike directed transport in
effectively infinite periodic systems. In contrast, we ad-
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dress here for the first time the typical electronic setup of a
finite sample which is coupled to two electron reservoirs.
We show that directed chaos has remarkable consequences
also in this context where the transport velocity is not
directly measurable; instead, the conductance becomes
the most basic and most relevant quantity. Because of
biased diffusion, a new length scale �ch appears and rules
the asymptotic decay of the conductance with the sample
length; see Eq. (10) below. Moreover, chaotic trajectories
can propagate through samples of arbitrary length, and,
consequently, the conductance approaches a nonzero con-
stant given in Eq. (5). Note that it is not possible to reduce
the description of directed chaos to a diffusion equation
with bias. In our explicit result for the conductance,
Eq. (17), we must account also for the detailed structure
of the underlying mixed phase space.

To be specific, we investigate the prototypical model
first introduced in Ref. [13]. We consider a two-
dimensional electron gas (2DEG) confined to a quasi-
one-dimensional channel [Fig. 1(a)]. One wall of the chan-
nel is straight. Electrons are specularly reflected, but no
backscattering occurs in the transport direction. The other
1-1 © 2006 The American Physical Society
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wall has a rough surface causing strong and essentially
random scattering. The details of this roughness are not
crucial (see below). Directed chaos is induced by a per-
pendicular magnetic field which breaks time-reversal in-
variance. We stress that a realization of our model does not
require more than a novel combination of elements which
are all well understood and experimentally accessible in
the context of a mesoscopic 2DEG, namely, transversal
magnetic fields of moderate strength, negligible bulk scat-
tering, and surfaces which are either disordered or manu-
factured with a precisely defined geometry [1–6].

For our purpose, it is sufficient to treat the electrons as
independent classical particles; i.e., we assume a semiclas-
sical regime with many transversal modes in the channel,
N �m�vFb=h� 1. We use dimensionless units in which
channel width and Fermi velocity are unity, b � vF � 1.
The strength of the magnetic field is parametrized by the
cyclotron radius rc � m�vF=eB. Besides the length of the
sample, this is the only free parameter in our problem. We
will assume that the magnetic field is not too strong, rc �
1. In this case, there are no pinned orbits in the bulk of the
channel, and the phase space contains only two types of
electron trajectories: regular orbits skipping along the
clean channel boundary and chaotic or random orbits
which are reflected from both walls [Fig. 1(a)]. The regular
orbits are transporting continuously in one direction, say, to
the left. On the average, the chaotic orbits are transporting
in the opposite direction, thus compensating for the regular
transport and making the system unbiased as a whole.
However, the transport velocity _x of a chaotic electron is
fluctuating; in fact, the dynamics is diffusive with a super-
imposed drift along the channel. The average drift velocity
can be obtained by application of a phase space sum rule
[10]. For our model, we find for the long-time velocity
average of almost all chaotic trajectories

vch �
1

2

�� sin� cos�
��1� cos�� � sin�	 � cos�

; (1)

with ��rc� � arccos�1� 1=rc� [13]. This result is indepen-
dent of the precise modeling of the rough channel surface
as long as the phase space structure of Fig. 1(b) is pre-
served. In Ref. [13], we considered the two extreme cases
shown in the insets in Fig. 1(a). In one case, the surface is a
periodic array of semicircular scatterers with a small radius
R! 0 [14]; i.e., the dynamics of the system is determinis-
tic and there is no disorder whatsoever. In the second case,
the direction ’ of the trajectory was randomized upon
every scattering from the rough surface. Specifically, it
was chosen with probability density P�’� � 1

2 sin’ from
the interval 
0; �� such that the invariant measure on the
energy shell dxdyd’was preserved. A physical realization
of this behavior is a disordered surface with a correlation
length that is below the Fermi wavelength. While this
second system is nondeterministic when approximated
classically, its transport properties are essentially the
same as for the case of deterministic directed chaos. In par-
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ticular, in both cases an ensemble of chaotic trajectories
spreads diffusively around the moving center of mass,
h�x2i � Dcht [13]. The precise value of the diffusion
constant depends on the detailed modeling of the rough
boundary. Analytical results for Dch are available in the
case of random scattering [13], and, therefore, we shall use
this version of the model in the numerical calculations
below.

The electronic conductance is obtained within the
framework of the Landauer-Büttiker formula [1] G�L� �
�2e2=h�T�L�. We approximate the transmission semiclas-
sically, T � Nt�L�, and discuss quantum corrections at the
end of this Letter. t�L� denotes the total classical probabil-
ity that an electron is transmitted through a sample of
length L if it enters the system at x � 0 from the left
with random initial conditions P�y; ’� � 1

2 cos’ (y 2

0; 1�, ’ 2 
� �

2 ;	
�
2�). According to our convention

(regular orbits are skipping to the left), these initial con-
ditions are within the chaotic component of phase space.
Similarly, we define the probability t0�L� that an electron is
transmitted if it enters at x � L from the right with an
analogous distribution (but ’ 2 
�2 ;

3�
2 �). The total trans-

mission probability must be the same for the two distinct
transport directions:

t�L� � t0�L�: (2)

There are various ways to arrive at this fundamental iden-
tity. For example, one observes that t � t0 would result in
the accumulation of particles in one of the reservoirs even
when the system is in thermal equilibrium. Alternatively, a
microscopic derivation can be based on the fact that the
scattering map of Hamiltonian systems is area preserving.
Although Eq. (2) is not specific for directed chaos, this
identity has very interesting consequences in the present
context. While t�L� is entirely due to chaotic trajectories
whose properties are not immediately accessible, t0�L� can
be decomposed into conditional probabilities for regular
and chaotic trajectories:

t0�L� � �regt0reg�L� 	�cht0ch�L�; (3)

where

�reg �
1

2

Z
reg
dyd’ cos’ �

1

2

�� sin� cos�
1� cos�

(4)

is the relative area of the regular component in the trans-
versal Poincaré section [Fig. 1(b)], and �ch � 1��reg.
Because of the lack of backscattering along the regular
trajectories, we have t0reg�L� � 1. Moreover, it is clear that
t0ch ! 0 for L! 1. This is so because, for trajectories
which are moving through arbitrarily long samples against
the average chaotic flow, the time-averaged velocity cannot
converge to vch. Hence, these trajectories must be of
measure zero in phase space. Taken together, the men-
tioned facts yield a remarkable result which is illustrated
in the right inset in Fig. 2: For long systems, the probability
that a chaotic trajectory transmits from x � 0 to x � L is
1-2
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given by the relative phase space area occupied by the
countermoving regular trajectories:

t�L� ! �reg �L! 1�: (5)

The goal is now to understand quantitatively how t0ch�L�
decays from t0ch�0� � 1 to zero as the length of the system
increases. The results of numerical simulations for a wide
range of values rc are shown in Fig. 2. The data suggest an
exponential behavior for long wires. This can be under-
stood after replacing the microscopic dynamics by the
Fokker-Planck equation (FPE) for biased diffusion. At x �
0 and x � L, we assume absorbing boundary conditions.
The probabilities to reach these exits from a point 0  x 
L within the sample are then

p0L�x� �
e�x=�ch � e�L=�ch

1� e�L=�ch
(6)

and

pL�x� �
1� e�x=�ch

1� e�L=�ch
; (7)

respectively [15]. Here

�ch � Dch=vch (8)

denotes the Peclet length of the biased diffusion process.
In order to contribute to the transmission from the right

to the left end of a wire of length L, a chaotic particle
should first be transmitted through a segment of length l <
L and then, starting from x � L� l, be absorbed at x � 0.
Based on this argument, we propose as a recursion relation
for the chaotic transmission

t0ch�L� � t0ch�l�p
0
L�L� l�: (9)

Note that this relation cannot be valid for arbitrary l. For
example, l � 0 leads to t0ch�L� � 0 as, for a diffusing
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FIG. 2. The chaotic transmission (+) is compared to Eq. (16)
for rc � 200, 50, 15, 10, 6, 3, and 2 (top to bottom). Each data
point represents 106 trajectories. For rc � 50, the asymptotic
exponential is shown with a dashed line. Left inset: Dependence
of the Peclet length on the cyclotron radius. Right inset: For rc �
10, the total transmission (�) is compared to Eq. (17) and to the
asymptotic constant �reg � 0:294.
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particle starting at one of the absorbing boundaries, the
probability to reach the opposite end is identically zero.
The reason for this limitation can be understood as fol-
lows. Upon replacing the original dynamical system by a
1D FPE, we have discarded all information about the
momentum of the electron. Strictly speaking, it is then
impossible even to define a transmission probability, since
this requires entering the system with a given direction.
Hence, for Eq. (9) to be valid, the length scale for momen-
tum correlations should be negligible compared to the
distance from the boundaries, �ch � x and �ch � l.
Under this assumption, we find to leading order t0ch�L� �
t0ch�l�e

��L�l�=�ch with the solution

t0ch�L� � c exp��L=�ch�: (10)

The dashed line in Fig. 2 shows this exponential for rc �
50 (with a suitably chosen prefactor). Indeed, the asymp-
totic decay of the transmission probability is reproduced.
However, for short systems the behavior is clearly not
exponential. Moreover, even in the asymptotic regime L!
1, the FPE approach is not accurate enough to predict the
prefactor c of the exponential decay [16]. This is no
surprise. According to Eq. (10), a different prefactor cor-
responds to an additive constant in the system length L, and
this type of error must be expected after discarding the
correlation length of the momentum.

We conclude that a satisfactory theory for t0ch�L� cannot
be based on the FPE alone. As an alternative model, let us
consider a generalization of the persistent random walk
[17] to a biased walk (BPRW): A particle moves with
velocity �vF and is reflected with direction-dependent
probabilities at obstacles with spacing L1. For a segment
of length L � nL1, we denote the transmission and reflec-
tion probabilities by tn � 1� rn � t�nL1� (left to right)
and t0n � 1� r0n � t0ch�nL1� (right to left). A multiple-
scattering expansion allows us to express these probabil-
ities in terms of a single segment. We find

tn �
1� r01=r1

�t01=t1�
n � r01=r1

(11)

and

t0n �
1� r1=r01

�t1=t01�
n � r1=r01

: (12)

In our case, the chaotic transport is biased to the right.
Therefore, we assume t1 > t01 and find in the limit n! 1

t1 � 1� r1=r
0
1 (13)

and

t0n � t1�t1=t01�
�n �n! 1�: (14)

However, there is no direct connection between the pa-
rameters of the BPRW and the dynamics of our original
model. In order to close this gap, we must make use of the
information about the underlying phase space structure,
Eq. (5), and the result obtained within the FPE approach,
Eq. (10). The former implies t1 � �reg or, equivalently,
1-3
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r1=r
0
1 � �ch. Further, the comparison of Eqs. (10) and (14)

yields

c exp��nL1=�ch� � �reg�t1=t01�
�n: (15)

Now it is easy to read off the correct prefactor of the
asymptotic exponential decay c � �reg, which was used
for the dashed line in Fig. 2. On the other hand, we infer
exp�L1=�ch� � t1=t

0
1, which is substituted into Eqs. (11)

and (12). The final result for the chaotic transmission
probability from right to left is then

t0ch�L� �
�reg

exp�L=�ch� ��ch
; (16)

while the total transmission is given by

t�L� �
�reg

1��ch exp��L=�ch�
: (17)

This nontrivial prediction, which does not contain any free
parameters, is confirmed numerically in Fig. 2. The fact
that an appropriate synthesis between FPE and BPRW
should be used to reproduce the data was not at all obvious.
Note that in an analogous approach to the unbiased case the
PRW yields Ohm’s law in the form t�L� � �D=vF�L

�1

�L! 1�, while the FPE implies only t� L�1. In contrast,
for the biased case both approaches contribute complemen-
tary information and are, in fact, mutually incompatible
approximations [18].

Small but systematic deviations are visible in Fig. 2 for
both a very small and a very large cyclotron radius. At least
partially, these deviations can be attributed to direct tra-
jectories which escape from the system before being scat-
tered. Such trajectories are always sensitive to the details of
a given model and, therefore, not of primary interest here.
We restrict the discussion to some simple examples.
Trajectories which enter at x � 0 with a steep angle
��=2 & ’ will reach x � 0 again after completing a
simple arc. From the geometric condition cos’< y=2rc,
we see that the corresponding phase space volume vanishes
as r�1

c . Therefore, these trajectories lead to deviations for a
small cyclotron radius. For short systems or for a large
cyclotron radius and shallow incidence ’ � 0, there can
also be directly transmitted trajectories. A rough estimate
requires L &

�������
8rc
p

for their existence, which is compatible
with Fig. 2 (L � 40 for rc � 200).

According to Eq. (17), the conductance of a wire with
directed chaos saturates to a finite value as L! 1. This
claim is in sharp contrast to quantum localization, which
leads to vanishing conductance in any coherent quasi-1D
quantum system with uncorrelated disorder. These two
contradicting statements can be reconciled as follows. In
the presence of directed chaos, the localization length �
diverges exponentially with the number of transversal
modes ( ln�� N � h�1) [19]. Thus, even for moderate
N, the localization length will easily exceed the sample
length L or the coherence length of the given material. In
this regime, we can safely ignore localization. Other quan-
tum effects such as weak localization or tunneling are not
13060
expected to change our results qualitatively, although they
may lead to small corrections �N�1 in the relevant pa-
rameters � and �reg. A numerical analysis of such effects
will be attempted elsewhere.

Support from the Volkswagen Foundation (Contract
No. I/78235) and from the Göttingen Graduate School of
Physics is gratefully acknowledged.
1-4
*Electronic address: holger@chaos.gwdg.de
[1] Y. Imry, Introduction to Mesoscopic Physics (, Oxford,

1997).
[2] C. M. Marcus et al., Phys. Rev. Lett. 69, 506 (1992); A. G.

Huibers et al., Phys. Rev. Lett. 81, 1917 (1998).
[3] R. de Picciotto et al., Nature (London) 411, 51 (2001).
[4] D. Weiss et al., Phys. Rev. Lett. 66, 2790 (1991); 70, 4118

(1993).
[5] R. Fleischmann, T. Geisel, and R. Ketzmerick, Europhys.

Lett. 25, 219 (1994).
[6] M. Leadbeater, V. I. Falko, and C. J. Lambert, Phys. Rev.

Lett. 81, 1274 (1998).
[7] B. W. Li and J. Wang, Phys. Rev. Lett. 91, 044301 (2003);

S. Denisov, J. Klafter, and M. Urbakh, Phys. Rev. Lett. 91,
194301 (2003).

[8] The term directed quantum chaos was used to refer to a
non-Hermitian random-matrix model for disordered sys-
tems in K. B. Efetov, Phys. Rev. Lett. 79, 491 (1997). A
quantization of the chaotic component of our model would
provide one realization.

[9] S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Phys. Rev.
Lett. 84, 2358 (2000).

[10] H. Schanz et al., Phys. Rev. Lett. 87, 070601 (2001);
H. Schanz, T. Dittrich, and R. Ketzmerick, Phys. Rev. E
71, 026228 (2005).

[11] T. S. Monteiro et al., Phys. Rev. Lett. 89, 194102 (2002);
P. H. Jones et al., physics/0504096.

[12] W. Acevedo and T. Dittrich, Prog. Theor. Phys. Suppl.
150, 313 (2003).

[13] H. Schanz and M. Prusty, J. Phys. A 38, 10 085 (2005).
[14] Finite R results in a correction to the first term in the

denominator of Eq. (1); see [13].
[15] C. W. Gardiner, Handbook of Stochastic Methods,

Springer Series in Synergetics (Springer, Berlin, 1996).
[16] Extrapolation of Eq. (10) to L � 0 yields c � 1. It is also

possible to repeat the argumentation leading to Eq. (9) for
t�L�. Using Eq. (3), one finds in this way c � �reg=�ch.
Both results disagree with the correct value c � �reg.

[17] G. H. Weiss, Aspects and Applications of the Random
Walk (North-Holland, Amsterdam, 1994); Physica
(Amsterdam) 311A, 381 (2002).

[18] For the BPRW, we derive explicit expressions for transport
velocity v and diffusion constant D. Within the FPE, we
must then expect a decay of the transmission probability
with length scale � � D=v. In general, this disagrees with
the value ~� � L1= ln�t1=t01� obtained from Eq. (14). A
continuum limit (L1; r1; r01 ! 0 for fixed t1) is not suffi-
cient to remove this discrepancy.

[19] L. Hufnagel et al., Phys. Rev. Lett. 89, 154101 (2002).


