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The distribution of scattering delay times is analyzed for classical electrons which are transmitted
through a clean channel. For a nonzero magnetic field the distribution shows a regular pattern of maxima
(logarithmic singularities). Although their location follows from a simple commensurability condition,
there is no straightforward geometric explanation of this self-pulsing effect. Rather it can be understood as
a time-dependent analog of transverse magnetic focusing, in terms of the stationary points of the delay
time. We explain that this is a generic mechanism which may lead to singular delay distributions also in
other scattering systems without commensurability effects.
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Ballistic semiconductor nanostructures offer fascinating
opportunities to observe effects from the theory of classical
dynamical systems. Recent experiments with confined
two-dimensional electron gases (2DEG) revealed traces
of chaos, nonlinear resonances, unstable periodic orbits
or Kolmogorov-Arnold-Moser hierarchies in phase space
[1], and also a variety of magnetic commensurability ef-
fects [2–4]. Among the latter, magnetic focusing [2] is of
particular importance and has found numerous applica-
tions such as the detection of composite fermions [5] or
the separation of spin states [6]. All these results were
based on conductance measurements. However, it is well
known that the transition probabilities alone provide only
an incomplete description of a scattering system. Important
additional information is contained, for example, in the
delay time, i.e., the time spent by the scattered particle in
the interaction region. In a seminal work Wigner had
pointed out the equivalence between the delay time and
the energy derivative of the phase of transition amplitudes
[7]. Ever since there has been a lot of theoretical and
experimental activity devoted to understanding the distri-
bution of this quantity in various physical contexts [8],
including, in particular, also mesoscopic transport through
systems with nonlinear dynamics [9–12]. For semiconduc-
tor nanostructures there exist pioneering measurements of
picosecond delays for ballistic electrons in a magnetic
focusing geometry [13]. Moreover, experimental access
to the scattering phase (e.g., in quantum dots [14] ) might
result in an electronic implementation of Wigner’s relation
in the near future.

Here we analyze the delay-time distribution for the
transmission of electrons through a clean channel with a
transversal magnetic field [Fig. 1(a)]. This model is utterly
simple but not unrealistic in the above context. It can be
realized as a finite constriction in a 2DEG, and the delay
distribution may be obtained, e.g., from the time-resolved
current response to a picosecond voltage pulse similar to
[13]. We predict a rather surprising self-pulsing effect: a
number of electrons entering the interaction region at the

same moment of time exit from the channel bunched
together in packets which form a nearly periodic train.
Specifically we calculated numerically the distribution of
trajectory lengths from entry to exit and obtained a histo-
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FIG. 1 (color online). (a) A typical electron trajectory trans-
mitting through a channel of length L under the influence of a
perpendicular magnetic field. (b) Distribution of transmission
delays for r � 4 and L � 200. The white dashed line is the
average density, Eq. (7). The inset (c) magnifies the region
around t� � 218:5 [Eq. (10)]. Here the dashed vertical lines
mark the delay times tn of orbits which are commensurate
with the channel length (see text). The small insets demonstrate
with two examples that the maxima tn < t� (d) actually are
logarithmic singularities while this is not the case for t0n > t�

(e). In these semilogarithmic plots the density is shown as a
function of �t � t� tn. The straight line in (d) has the slope
given in Eq. (25).
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gram which is composed of well-separated peaks on a
smooth background [Fig. 1(b) and 1(c)] [15].

Recently, self-pulsing was predicted in another physical
context [11], and experimental confirmation came from
microwave scattering in 2D resonators [12]. There the
scattering echoes revealed a characteristic frequency of
the internal weakly chaotic dynamics. No similar explana-
tion applies to our (integrable) model. Another striking
difference is the fact that in our case the delay-time density
actually diverges at some of the peaks [Fig. 1(d)].

Our numerical results are reminiscent of transverse
magnetic focusing [2], where the conductance between
two point contacts to a 2DEG oscillates as a function of
the magnetic field (or some other parameter) and shows a
regular pattern of singularities [16]. The fundamental dy-
namical origin of these singularities are caustics of the
classical electron motion. They correspond to the station-
ary points of a function that maps the incident angle to the
exit location for an electron beam. Similarly we will ex-
plain the self-pulsing by stationary points of the delay time
in the asymptotic phase space of scattering trajectories. To
our knowledge, the effect of such stationary points has
never been analyzed before, not in any kind of scattering
system. Therefore, our results might be of interest beyond
the study of electrons in a magnetic field, just as caustics in
configuration space are relevant beyond magnetic focusing
and in many different physical systems [17]. We shall
come back to this point at the end of the Letter.

We consider electrons entering the channel of Fig. 1(a)
from the left and with a given Fermi energy EF �
�m=2�v2

F. Otherwise, the initial conditions 0 � y � 1 and
j’j � � �

2 are randomly drawn from the microcanonical
distribution restricted to x � 0, p�y;’� � 1

2 cos’. We use
the channel width and the Fermi velocity as units of length
and velocity, respectively (vF � b � 1). The cyclotron
radius r � mvF=eB and the length L of the system are
free parameters [18]. Any trajectory is composed of circu-
lar arcs which are traversed clockwise (by convention
about the direction of the magnetic field). For a point
(x, y, ’) in phase space, the center of the current arc is
the point �xc; yc� � �x� r sin’; y� r cos’�. Upon reflec-
tion from the channel walls yc is conserved. Thus the
system is integrable. We restrict attention to yc < 0. For
these trajectories the x component of the velocity is posi-
tive at any moment of time, and they generate the bulk of
the left-to-right transmission delay distribution (up to t	
1270 for the parameters of Fig. 1). We change variables to
(�, �), where 0 � � � arccos��yc=r� � �=2 is the di-
rection of the trajectory immediately after a reflection from
the lower wall. In terms of this angle, the average transport
velocity of a trajectory in an infinite channel is �vx �
�x���=�t���. Here

 �x��� � 2r�sin�� sin��; (1)

 �t��� � 2r����� (2)

are the horizontal and the total length of the trajectory
segment between two reflections from the lower wall,
respectively. If cos� � 1� 1=r, the trajectory reaches
the upper wall and is reflected there with the angle � �
arccos�cos�� 1

r� [see Fig. 1(a)]. � is set to zero for
trajectories skipping along the lower wall only. � is the
longitudinal location of the first reflection from the lower
wall. We make the convention ��x���=2 � � <
�x���=2 such that negative values of � correspond to
positive ’ and vice versa. Explicitly, the transformation
between (’, y) and (�, �) is given by

 y � r�cos’� cos��; (3)

 � 2� � 2r�sin�� sin’� �� < 0�; (4)

 � 2� � 2r�sin�� sin’� �� > 0�: (5)

The probability density in the new variables is p��; �� �
1
2 sin�.

As a first approximation to the delay time we ignore the
dependence on � and set

 ����� �
L
vx
� L

�t���
�x���

: (6)

This results in the distribution

 

�P�t� �
Z
d�d�p��; ����t� ������ �

sin�t�x��t�

2j ��0��t�j
;

(7)

where �t is the root of ����� � t. For orbits which do not
reach the upper wall we find

 �� 0��� � L
sin��� cos�

sin2�
�cos�> 1� r�1�; (8)

 

�P�t� �
r
L

sin4�t

sin�t ��t cos�t
�L < t < t��: (9)

Clearly, the transmission delay is bounded from below by
t � L (�! 0). On the other hand,

 t��L; r� � L
arccos�1� r�1�������������������������

2r�1 � r�2
p (10)

is the maximum delay for skipping orbits. Their contribu-
tion to �P�t� abruptly drops to zero at this point [t� � 218:5
in Fig. 1(b)]. Higher values t > t� correspond to trajecto-
ries which bounce off both, the lower and the upper wall of
the channel. We omit here the lengthy expression replacing
Eq. (8) in this case. After substitution into Eq. (7) it yields
the averaged delay-time distribution for t > t� which is
displayed together with Eq. (9) by the dashed white line in
Fig. 1(b).

Now we come to the conspicuous oscillations in the
delay-time density around its average value [Fig. 1(c)]. In
general, the delay time ���; �� depends on both variables,
� and �. A variation of � corresponds to a longitudinal
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shift of the trajectory [Fig. 1(a)] and results in [19]

 @����; �� � �cos’��1 � �cos’0��1; (11)

where ’ and ’0 are the inclination angles of the trajectory
on entry and exit, respectively. However, if the length of
the system is an integer multiple of the length of a segment,

 L � n�x��n�; (12)

these angles are equal. Only in this case the dependence of
the delay time on � disappears and we have

 ���n; �� � ����n� � n�t��n�: (13)

For each n there can be at most two solutions to Eq. (12),
one corresponding to a skipping orbit and the other one not.
We denote the corresponding delay times by tn < t�

(nmin � n) and t0n > t� (n0min � n), respectively. In
Fig. 1(c) these values are marked with dashed vertical
lines, and we see that they coincide with the peaks in the
delay-time distribution. It is tempting to explain this ob-
servation by the following simple (and misleading) argu-
ment: typically, for a given � the various values of �
contribute at different times to the density, while all of
them add up in the same bin when � � �n. So it is clear
that the count should have a peak there. However, this
cannot explain why the peaks at tn are singularities of the
density while the t0n are finite maxima. To highlight this
fact numerically we have magnified in Fig. 1(d) the density
in the vicinity of t40 and observe that it grows as P�t� /
ln�t� tn�. In contrast, the corresponding plot for t040
[Fig. 1(e)] saturates to a finite value.

In order to understand the nature of the maxima we
construct the function ���; �� explicitly and represent the
delay-time density as

 P�t� �
Z
d�

Z
d�p��; ����t� ���; ���

�
Z
d�
p��; ��
j@��j

������������t;��
: (14)

To this end, we decompose a trajectory into a number n of
complete arcs and two additional terms for entry and exit.
Formally we define n��� as the best integer approximation
to L=�x, e.g., n � 3 in Fig. 1(a). The mismatch to exact
commensurability will be denoted by

 �L��� � n�x��� � L: (15)

According to Fig. 1(a) the delay time is given by

 ���; �� � n�t��� � s��; �� � s��; �0� (16)

with �0 � �� �L���. In Eq. (16), s��; �� is the length of
the incomplete arc segment at the beginning of the trajec-
tory. For � in Fig. 1(a) this is
 

s��; �� � r��� ’� �’< 0; 0 � � � �x���=2�

� r
�� arcsin��=r� sin��� (17)

[the second line follows from Eq. (5)]. However, �0 can

take values in the interval [� �x���, �x���] since we
have j�L���j< �x

2 and j�j< �x
2 . Therefore, we extend the

domain of s��; �� by the definitions

 s��;��� � �s��; ��; (18)

 s��;�x��� � �� � �t��� � s��; ��: (19)

Note that s��; �� is continuous at s��; 0� � 0 and
s��;�x���=2� � �t���=2 but not analytic at � � 0.
Equations (16)–(19) represent the delay time for 0 � � �
�
2 and arbitrary values � �x

2 < �<� �x
2 . Figure 2 displays

this function in the regions (a) t41 & t & t39 and
(b) t039 & t & t041. All level sets of constant delay time are
one-dimensional curves in the two-dimensional phase
space. In this respect there is nothing special about t �
tn, and thus the commensurability between system and
trajectory cannot explain the maxima in the density.
Rather we observe in Fig. 2(c) @����n; 0� � 0. This is
not immediately obvious from geometrical considerations
but it can be confirmed analytically. We conclude that
��; �� � ��n; 0� are stationary points of the delay time,
and this is what really singles out the values t � tn. No
stationary points exist for t > t� [Fig. 2(d)], although @��
is very small close to � � ��x���=2.

In the vicinity of the stationary points we can expand the
delay time to second order,

 �t � 1
2@

2
����

2�� @2
�������

1
2@

2
����

2; (20)

solve for �� � ���n, and substitute the result into

 @�� � @2
������ @

2
����: (21)

This gives @�� as a function of � and �t � t� tn and can
be used in Eq. (14) to calculate the divergent contribution
to the delay-time density. Unfortunately this procedure is
more complicated than it may seem on first sight. Because
of Eq. (18) we must distinguish for �t, �L > 0 three
regions (i) � > 0, (ii) �0 < �< 0, and (iii) � < �0 (and
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FIG. 2. Lines of constant delay time ���;�� � t are shown in
the vicinity of (a) t40 and (b) t040. The function @�� vanishes at
� � �n and � � 0 (c) while no stationary point exists for � �
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again three regions for �t, �L < 0). Here �0��t� is the
point where the third term in Eq. (16) changes sign. It is
given implicitly by the condition �0 � ��L��n � ���,
where ����0; �t� is the root of Eq. (20). Solving for �0 we
find

 �0 � ��sin�n�
�1

����������������������������������������������
2�t�cos3�n�=�2n� 1�

q
: (22)

Note that we did not drop the third term in Eq. (20). In fact,
we have @2

��� � 0 in the second region although ���n; ��
is constant as a function of �. This is no contradiction
since, according to Eq. (22), this region shrinks to a point
for � � �n [and hence is not visible in Fig. 2(d)]. With
Eqs. (20)–(22) it can be shown that the contribution of
region (ii) approaches a constant as �t! 0. So it is irrele-
vant for our purpose. In the regions (i), (iii) we use @2

��� �
0 and find

 @����; �t� �
����������������������������������������������
�@2
����

2�2 � 2�t@2
���

q
; (23)

 

Z d�
j@��j

�
1

j@2
���j

ln�j@2
���j�� j@��j� � const: (24)

In region (i) the integral extends from � � 0 to a value
	�x��n�=2. Its leading contribution is the logarithmic
term j ln�t=2@2

���j from � � 0. The same contribution
results from the upper limit �0 of region (iii), and in either
case we have j@2

���j � �L=r��cos�n�
�2. Thus, together

with the prefactor 1
2 sin�n � L=4nr from Eq. (14), we get

 P�t� �
1� �L=2nr�2

4n
j ln�t� tn�j �t! tn�: (25)

This prediction for the strength of the divergence has been
confirmed numerically. For example both, a fit to the data
in Fig. 1(d) and Eq. (25) yield a prefactor 0.00381 for
n � 40.

The rather complicated analytical structure in the vicin-
ity of the stationary points of the delay time and also the
self-pulsing due to their regular arrangement are specific to
our model. We would like to stress, however, that these
features are not at all necessary for the appearance of
singularities in the delay-time density. Generic stationary
points for 2D scattering problems are extrema and saddle
points. It is easy to see that saddle points lead again to a
logarithmic divergence, while the density is finite at iso-
lated maxima and minima. Although a logarithm is a rather
weak singularity, it should lead to a prominent maximum
in a histogram with finite resolution such as Fig. 1(c). This
might be important, e.g., for inverse scattering problems.
Consider, for example, a situation where it is difficult to
control the precise initial conditions of test particles while
their time delay can be measured with high precision. Then
saddle points of the delay time will be among the dynami-

cal features which are directly accessible from experimen-
tal data. Therefore, it seems worthwhile to study them in
more generic situations and independent of self-pulsing
effects.

*Electronic address: holger@nld.ds.mpg.de
[1] C. M. Marcus et al., Phys. Rev. Lett. 69, 506 (1992); P. B.

Wilkinson et al., Nature (London) 380, 608 (1996); A. S.
Sachrajda et al., Phys. Rev. Lett. 80, 1948 (1998); A. P. S.
de Moura et al., Phys. Rev. Lett. 88, 236804 (2002).

[2] H. van Houten et al., Phys. Rev. B 39, 8556 (1989).
[3] D. Weiss et al., Phys. Rev. Lett. 66, 2790 (1991); R.

Fleischmann, T. Geisel, and R. Ketzmerick, Phys. Rev.
Lett. 68, 1367 (1992).

[4] T. M. Fromhold et al., Phys. Rev. Lett. 87, 046803 (2001).
[5] V. J. Goldman, B. Su, and J. K. Jain, Phys. Rev. Lett. 72,

2065 (1994).
[6] L. P. Rokhinson et al., Phys. Rev. Lett. 93, 146601 (2004).
[7] E. P. Wigner, Phys. Rev. 98, 145 (1955).
[8] C. A. A. de Carvalho and H. M. Nussenzveig, Phys. Rep.

364, 83 (2002).
[9] Y. V. Fyodorov and H. J. Sommers, J. Math. Phys. (N.Y.)

38, 1918 (1997).
[10] A. Z. Genack et al., Phys. Rev. Lett. 82, 715 (1999); B. A.

van Tiggelen, P. Sebbah, M. Stoytchev, and A. Z. Genack,
Phys. Rev. E 59, 7166 (1999).

[11] C. Jung, C. Mejia-Monasterio, and T. H. Seligman,
Europhys. Lett. 55, 616 (2001); C. Jung et al., New J.
Phys. 6, 48 (2004); H. Lee, C. Jung, and L. E. Reichl,
Phys. Rev. B 73, 195315 (2006).

[12] C. Dembowski et al., Phys. Rev. Lett. 93, 134102 (2004).
[13] E. A. Shaner and S. A. Lyon, Phys. Rev. Lett. 93, 037402

(2004).
[14] A. Yacoby et al., Phys. Rev. Lett. 74, 4047 (1995); R.

Schuster et al., Nature (London) 385, 417 (1997); M.
Sigrist et al., Phys. Rev. Lett. 93, 066802 (2004).

[15] This is not the case in the absence of a magnetic field (r �
1). There the distribution is monotonically decreasing,
P�t� � L�1�L=t�3�1� 
L=t�2��1=2 for t > L.

[16] In reality these singularities are blurred by the finite
contact width or by quantum effects [2]. An analogous
smoothing of the delay-time singularities must be ex-
pected, but this will not be considered here.

[17] F. Wright, Nature (London) 319, 720 (1986); M. V. Berry
and A. N. Wilson, Appl. Opt. 33, 4714 (1994); M. A.
Topinka et al., Nature (London) 410, 183 (2001); L.
Kaplan, Phys. Rev. Lett. 89, 184103 (2002); M.
Wilkinson, B. Mehlig, and V. Bezuglyy, Phys. Rev. Lett.
97, 048501 (2006).

[18] Our results are not sensitive to the precise values of L and
r as long as the magnetic field has a moderate strength
r * 1. For numerical calculations we choose r � 4 and
L � 200.

[19] We use a notation where, e.g., @�� stands for @�=@�. All
second-order derivatives are evaluated at the stationary
point ��; �� � ��n; 0�.

PRL 98, 176804 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
27 APRIL 2007

176804-4


