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Effective coupling for open billiards
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We derive an explicit expression for the coupling constants of individual eigenstates of a closed billiard that
is opened by attaching a waveguide. The Wigner time delay and the resonance positions resulting from the
coupling constants are compared to an exact numerical calculation. Deviations can be attributed to evanescent
modes in the waveguide and to the finite number of eigenstates taken into account. The influence of the shape
of the billiard and of the boundary conditions at the mouth of the waveguide are also discussed. Finally we
show that the mean value of the dimensionless coupling constants tends to the critical value when the eigen-
states of the billiard follow random-matrix theory.
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I. INTRODUCTION W(E) can be considered weak and then Swatrix (1) can

) ) ) be rewritten in terms of atNXN effective non-Hermitian
During the last years quantum chaotic scattering was &gmiltonianH

field of intense research. A great deal of the results obtained
was based on the projection operator formalism due to Fesh-

eff s

I
bach, Weidenriier, and other§1—3]. In this approach the S=1-2miw’ En W ()]
scattering system is decomposed into a closed subsystem de- ef
scribed by the internal Hamiltoniad;, with discrete bound Ho=H —i7WW. (4
statesn=1, ... N and a continuum of external scattering et

states labeled by the energf and an index N we will refer to this canonical formalisil—3] for express-
=1,...,A(E) corresponding to different open scattering ing the S matrix as theHamiltonian approacho scattering.
channels. The coupling between the internal and externaje use this name to distinguish it from &matrix obtained
subsystems is then incorporated by an operator with matrigirectly, i.e., without reference to any auxiliary closed sys-
elements\V,, , (E). The S matrix of the complete system can tem and its Hamiltonian.
be expressed in terms of these matrix elements and the When the internal Hamiltonian in E¢4) describes a cha-
HamiltonianH;,. This relation can be cast into the form  otic system, it is justified to replace it by a random matrix
[4], and by performing an average over the appropriate en-
[ —iK semble a statistical theory for tf&matrix is obtained that
11K (1) allows to calculate quantities of interest such as correlation
functions or the distribution of Wigner delay times and reso-
nance pole$5-8]. It was found that the results of such an
W. ) approach are to a large extent independent of the detailed
E—Hi, structure of the matrixV, but they do depend on the dimen-
sionless mean coupling strength
Here,S andK are energy-dependent square matrices of di-
mensionA X A, andW has dimensiomNx A. While this set- WP
ting is very general, the tools developed for the subsequent - D ' (5)
analysis of the properties of tH@matrix require additional
assumptions. In particular, the energy thresholds for thélere, D is the mean energy level spacing of the internal
opening of new scattering channels are usually neglected. Asubsystem, and the average - ), , is taken over the inter-
a consequence the energy dependence of the coupling matmal statesh and all open scattering channels
For example, when the coupling constébt exceeds the
critical valueg=1 and the number of scattering channels is
*Electronic address: holger@chaos.gwdg.de small compared to the total nhumber of states, a counter-

K=mW"'
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y with A=d%/az+d°/d;. On the boundary of the scattering
' system(bold solid line in Fig. 3 we require Dirichlet bound-
X ary conditiongBC) ¥ =0. This boundary condition and also
the precise geometry of the system are by no means essen-
tial, the following generalizes, e.g., immediately to a cavity
with more than one attached lead or Neumann 8@,V
=0. In Fig. 1 we have shown several possibilities to define a
FIG. 1. A scattering system consisting of an infinite waveguideclosed billiard that corresponds to the scattering system in
and a cavity is shown with bold lines. Various possibilities to add aguestion(solid and dotted thin lings We will restrict the
wall and obtain a closed billiard are shown with thin ||f‘99||d and discussion to the case shown with a solid line. We require
dotted. that the boundary of the internal system is located inside the
attached waveguide and that it consists of a transversal

intuitive shrinking of the widths of most resonances with gy aight line on which either Dirichlet or Neumann boundary
increasing coupling is observg@-13|. For each attached ., njitions are imposed to close the system. Clearly, even

scattering channel only one of the resonance widths growg,is restriction makes the correspondence between the scat-
further_ with the coupll_ngg. The resulting re_dlstrlbutlon of tering system and the auxiliary internal system not unique
Smatrix poles was coined resonance trapping. gecause the exact position of the closure along the wave-

x=-L x=0

Chaotic billiards with attached waveguides are considered, ige is variable. We use coordinates where this closure is at
as paradigm for chaotic scatterifly]. They are relevant as ,_ g hile the matching between waveguide and cavity is at
theoretical models for understanding the transport propertie)§: —L (L>0).
of mesoscopic semiconductor structuf&S] or experimental In the region of the attached waveguidex(—L) we can
results on microwave scattering in flat resonafd§—19. decompose any function into transversal modes
Also signatures of resonance trapping were recently ob-

served in billiards, both numericalj20—22 and in micro- — J2/bsin(\ 7 v/b A=12 7
wave resonator experimerts9]. AY) sinAmy/b) —( 20 )y @

_However, to our knowledge there is no theory that maps gecayse these functions form a complete and orthonormal
given billiard to an effective Hamiltonian with overcritical pacis on the interval () according to
coupling, thus really establishing a connection between the

numerically and experimentally observed phenomena and o
the results on resonance trapping obtained within the formal- > (V)b (y)=8(y-y') (0<yy'<b) (8)
ism (1)—(5). A=t

Motivated by this situation, it is the purpose of the present
paper to discuss the application of the Hamiltonian approach"
to open billiards in some detail and to answer questions such )
as: How can Eqgs(1) and(3) be derived for a billiard, what J (V)= S,
kind of approximations are involved and what is the resulting 0 dYAY)bar ()= ©
expression for the coupling constamg, , (E)? What is the
influence of the choice of the internal subsystem thatas The most general solution of the Helmholtz equation is a
uniquefor a given scattering system? superposition of scattering statés (x,y). They consist of a
Using the expression for the coupling constavifg, to  single incoming wave in transversal modleand the corre-
be derived in Sec. Il we will then address the effective cousponding outgoing modes given by tBematrix of the sys-
pling constant for a typical chaotic billiard with an attachedtem
waveguide. We show in Sec. lll tham the semiclassical

regime and when no tunneling barriers obstruct the e kX etikyx
waveguides, the coupling strength is fixed at the critical ‘I’A(X,Y)Z%(y)—\/k—'*‘z wa%'()’)T\/—-
valueg=1, independently of the size or the precise geom- NooA A (10)

etry of the billiard and of its openings. A numerical verifica-

tion of_our re_sults is co_ntained_ in Sec. IV,_foI_Iowed by aThe longitudinal wave numbéa, = Vk?— (xar/b)Z is real for
short discussion on the implications of our findings. N<A=[kb/ ], where[ - - - ] denotes the integer part. These
modes are called open or travelling, and the<c A matrix
S, ) corresponding to the open modes is the unitamatrix

We consider a situation as shown in Fig. 1. A scatteringVe are interested in. Fax>A the momentum along the
system is formed in two dimensions by an infinite waveguideVaveguide is imaginary. These modes are called closed or
of width b and and an arbitrary cavity. Inside the system the€vanescent. In the scattering stidtg with A< A the evanes-
potential is identically 0. We sét=2m=1 andE=k? such  Cent outgoing modes describe exponentially decaying contri-
that the stationary Schdinger equation reduces to the butions that modify the wave function in the vicinity of the

II. COUPLING CONSTANTS FOR INDIVIDUAL LEVELS

Helmholtz equation mouth of the waveguide. Evanescent incoming modes are
exponentially increasing into the waveguide and thus un-
(A+k>W(x,y)=0, (6) physical for the scattering system.
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When the evanescent modes are included, Shaatrix

becomes an infinite-dimensional operator that is no longer G(r,r’,k)= i > HY) Sy )x{ﬁwe”‘xxx"
unitary. It is possible to construct an eigenstate of the closed IV \/k—x \/K

billiard by a superposition of the scattering statés) in-

clu'dlng evanescent modezs. Supp&EE) has an eigenvalue + > Gii,(k)exp(iskAeris’kwx’) .
unity at some energi,=k; and leta,, , be the components ss'=x

of the corresponding eigenvector. Then the linear combina- (16)

tion of scattering states

N . Ind(EedI, the fIir:;,_t terrnf i?hsid(_a thhe brackets gives ritsgmt)o one
an an particular solution of the inhomogeneous equatidm),
‘P%N)(X’y)zg Tq’x(x’y)zg \/k_%(y)cos(kmx) while the second term with the unknown matricgs *,

A (11) G*', G ", andG™ " represents the most general solution
of the corresponding homogeneous Helmholtz equdifion
The unknown coefficients must be determined such that the
Green function satisfies also the boundary conditions inside
he cavity and on the transversal closure of the waveguide.
For this purpose assume fisstx’ and consider as a fixed
parameter. Thet(r;r’,k) as a function of ' should satisfy
the homogeneous Helmholtz equation with the boundary
conditions of the scattering system, i.e., it can be written as a
superposition of the scattering statés(r’) defined in Eq.
(10). On the other hand, wheri is fixed, the Green function

(—L=x=0) satisfies Neumann BC at=0 and it is thus
indeed an eigenfunction of the billiard because it satisfies E
(6) and the remaining boundary conditions by construction
The normalization of theS-matrix eigenvector, , in Eq.
(11) is not unity but rather determined by the normalization
of the billiard eigenfunction¥ N(x,y). If Dirichlet bound-
ary conditions are required at=0 the same argument can
be repeated for an eigenvaluel of the S matrix and we

have as a function ofr satisfies the boundary conditiorisleu-
D) D) mann or Dirichlel at x=0 where the closed billiard is sepa-
a a i iti i

(D) _N _ n\ : rated from the waveguide by the additional straight wall.

Va7 (6y) ; 2i Yaoxy) ; o, $a(y)sinkn \x) Thus, it must be a superposition of the functions
| (12
NS -
N/D _ iky x —iky X
(—L=x=<0). Consequently the spectrum of the billiard Py = Jk, (eMire ™, 17)
closed with Neumann or Dirichlet BC can be found from the »
secular equation which are in fact the scattering states for a semi-infinite
_ waveguide with Neumann or Dirichlet BC at one end. Con-
defl +S(E)]=0, (13)  sequently, the Green function has the form

which was first derived by Doron and Smilangi&a]. In a - 1 NID )
sense we will in the following invert this so-called scattering G(rir',k) =5 2 VPGP (r), (18

approach to the quantization of billiards. We will express the MA]

S matrix in terms of the eigenvalues and eigenfunctions of it another set of undetermined coefficiegts . Expand-

the close_d system. . ) ing Eq. (18) into transversal modes and comparing to Eg.
For this purpose consider the Green function of the Closegm) we obtain

billiard that is defined as the resolvent-efA in the space of

functions that satisfy the boundary conditions of the billiard. G*t=gS G' =g-I,
In position representation this definition can be expressed by (19)
the inhomogeneous Helmholtz equation G t=%gS G “==g.
(A+KH)G(r;r' k)=a(r—r"). (14 we can now repeat this argumentation under the opposite

assumptiork<x’ and find again the relationd9) but with
In the eigenbasis of the billiard the Green function reads G*~ andG~ " exchanged. This can be regarded as a conse-
quence of the symmetry of the Green function with respect
WX (r )W (r) to its two arguments. This symmetry, in turn, follows from
, (15  time-reversal symmetry. We conclude™ =G~ "=g—|I
=*+gSand hence

©

G(r;r' k)=,

=1 kP—k2

which can be verified usin@\lfn(r)z—kﬁllfn(r) and the g(k)=[1FS(k)] ™ (20
completeness of the functiong, inside the billiard. For

andr’ inside the waveguide we can expand the Green funcNote thatg(k) and thus the Green function diverges as ex-
tion with respect to the transversal modggy) and find as  pected at the solutions of the secular equati8), i.e., when
the general form of a solution of E¢l4), k corresponds to an eigenvalue of the closed billiard.
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Using Eqg.(20) we can now directly relate th® matrix to

the transversal expansion coefficients of the Green function

at the closure of the billiard. We define farx’ inside the

waveguide

b
Gy (X,X")= fo dy dy ¢, (y)G(x,y;x",y" ;K) by (Y')

(21
and
K= Vkiky Gy 1/(0,0), (22
5 2
Kix)'_ﬁ ,Gx (X)) [x=xr =0 (23
and derive from Eq(18) using Eq.(20)
iK(N)=£ (Neumann BC atx=0), (24)
iK (@)= I+_s (Dirichlet BC at x=0). (25)
Obviously, KN=0 for Dirichlet BC andK(®=0 for Neu-
mann BC atx=0. Egs.(24) and (25) can be inverted and
yield
|—ik®™N ] —iK®
STk ke (20

which is now in the form of Eq(1) (for Neumann BC up to

an irrelevant constant phgs&Ve can now proceed to deter-

mine the corresponding coupling constaw§,") by repre-

senting theK matrix in the eigenbasis of the billiard. From

Eqg. (2) we have

WX W, o
KW—wE T (27)
=1 n
and from Eqgs(15), (22), and(23) we find
TN (0)W(Y,(0)
K = \/kkaZ k; , (29)
n
J I o
o Z Y0 w2,(0)
KV = , 29
S T R 0
where we have introduced the projections
b
YD (x0 = JO dye (Y)W M (x,y) (30)
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wN) = \/Exp(N)(o)
A~ T n,A ’

1
W)= T ax "PED)E()
)\

(31)

(32

This form of the dependence of the coupling constants on the
internal wave functions is not surprising; also within pertur-
bation theory the coupling depends on the value of the wave
function at the point where the system is opened or on its
normal derivative for Neumann and Dirichlet boundary con-
ditions, respectively. However, in the situation we consider
perturbation theory is not applicable and, in particular, the
precise value of the prefactor in the coupling const#813$
and(32) could only be obtained from the derivation given in
this section.

The representatiof26) of the S matrix in terms of theK
matrices(28) and (29) is exact, when all transversal modes
are included. However, usually one is interested only in the
A X A unitary part of theS matrix, and this is onlyapproxi-
matelygiven by Eq.(26) when theK matrix is restricted to
open modes. 1123,24] the effect of this so-called semiquan-
tal approximation for the accuracy of eigenvalues within the
scattering approach to quantization was investigated numeri-
cally. It becomes negligible when the eneigys sufficiently
far from the threshold for the opening of a new channel.
Under this restriction we can considéf) as the coupling
constants corresponding to the unltary part of Bwmatrix.
WhenE approaches a threshold, E&) breaks down, since
the energy dependence of the coupling constants can no
longer be neglected. We will not consider this case here.

Ill. THE MEAN COUPLING STRENGTH

Given the explicit value$31) and (32) for the coupling
constants between individual states and individual scattering
channels we are now going to derive an estimate for the
dimensionless coupling strength) in the semiclassical limit
and neglecting evanescent modes. Since the concept of a
mean coupling strength is not well defined for infinitely
many internal states, the internal Hamiltonilr, entering
Egs.(2) and(4) should for this purpose be cut to some finite
matrix including only states that are close enough in energy
k,~k. In particular this means that we can replace the mo-
menta along the waveguidg, , in Egs. (11) and (12) by
their on-shell valuek, . The resulting approximate expan-
sions of the billiard eigenfunctions are projected onto the
transversal modes according to EO) and inserted into
Egs.(31) and (32) that simplify to

N/D a‘( N/ D)
WA (33
a

At this point it is necessary to determine the average magni-
tude of the coefficienta'") . We assume that the classical

of the eigenfunctions of the closed billiard onto the transverdynamics of the billiard is chaotic. In the semiclassical limit
sal modes of the waveguide. The values of the coupling corthis means that the quantum ergodicity theorem applies to
stants follow from comparing Eq27) to Eqgs.(28) and(29),  the eigenstates of the billiard, i.e., in particular the probabil-
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ity density integrated over an arbitrary region of the billiard =1 _,
tends to the relative area of that region. Applied to the part of
the billiard inside the waveguide we find B 3
2= -2
bL (b [0 1
—~J dyJ dx| WY (x,y)[? d=1 N
A 0 -L

0 a, 2
=J dx>, [2n,| cog(kyx)
—-L k)\

N

(a5 [ e
~(alz), & onip? 12T

(34)

whereA denotes the total area of billiard. In the second line
we have inserted the normal mode decomposition into
|wN(x,y)|2. The orthonormalization of the transversal

modes was then used to restrict the resulting double sum =12
over modes to diagonal terms. In the third lif@os)=1/2

was used <(Sin2>:1/2 in the completely analogous calcula-  FIG. 2. Geometry of the billiard. Four different possibilities to
tion for Dirichlet BC), and the sum over modes was approxi- attach the waveguide are used.

mated by a continuous integral. This is justified when the

number of modes is large, i.e., in the semiclassical limit. B dS'(E)

Using the resulting constraint on the normalization of the T(E)_MTr( JE S(B) ], (37)
coefficients of the billiard eigenfunctions in the transversal

basis implied by Eq(34), (|aV|2)=4/A, we find whereM is the number of the open channels inside the wave-

guide. The results are plotted in Fig. 3.
4 The figure shows an outstanding agreement of the two
(JWNP)|2) = Ao (350  approaches for low energies. The Hamiltonian approach de-
& scribes the positions as well as the widths of the narrow
resonances with high accuracy. The agreement is good even
close to the threshold energies of the individual channels.
Bor higher energies, however, the difference between the two
time delay functions increases due to the limited number of
ternal states included into the evaluation of the Hamil-
tonian approachS matrix. Similar results(not displayed
were obtained also with the waveguide attached to the

g=1. (36) 150

According to Eq(5) the average coupling between the inter-
nal states and the continuum must be normalized by th
mean level spacin® of the billiard that is the only indepen-
dent energy scale of the system. To leading semiclassic
order we have Weyl's lad =4 /A [25] that finally results

in

IV. NUMERICAL RESULTS

To check the validity of the Hamiltonian approach to scat- '

S i . 100F '
tering in a quantum billiard we have performed direct nu-
merical calculations for a Sinai billiard connected to a single
waveguide(see Fig. 2 First, we evaluated numerically the
1300 lowest eigenvalues and eigenvectors of the closed sys-
tem with Dirichlet and Neumann BC at the boundary seg- 50
ment to which the waveguide was attached. Using the ex- !

pressions (30)—(32) we calculated the elements of the !
coupling matrixw{{® . YLV L} U\MM

Knowing W and using Eqgs(1) and(2) we evaluated—as

the next step—th& matrix and compared it to th® matrix % Ent? 45
obtained by a direct method based on the numerical solution v
of the underlying Schidinger equation(see Ref.[26] for FIG. 3. The Wigner-Smith time delay obtained for the Hamil-

detailg. In order to visualize the differences between thesonian approacts matrix with Neumann BC(dashed ling com-
two Smatrices we compared first the corresponding Wignerpared with the result of a direct evaluati¢olid ling). In the dis-
Smith time delays played case the waveguide was attached to the boundary No. 1.
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boundaries No. 2, 3, and 4, respectively. In all these cases the
Neumann matching procedure was used.

On the other hand, for Dirichlet matching equati@®)
the results change drastically. In this case the agreement is
not good even for low energies. This may seem surprising
because the derivations of the previous sections were entirely

PHYSICAL REVIEW E 64 056227

]
154
o

|
I
[N}

O *

x+0O
<3

o+

parallel for Neumann and Dirichlet BC. However, an impor-
tant difference is hidden in the convergence properties of the
spectral decompositions of thie€matrix (28) and(29) as we
shall explain now. Projecting Egél1) and(12) onto trans- o
versal modexn we find,

|
ot
w
T
x
x

Im(Energy)

]
<
'S

.

X
x

N
a

VKo

Since the coefficienta{\”) are according to Eq(34) of

order 2A/A that is independent af, we have from Eqs31)
dently using the complex scaling methi@?®] that provides a

and(32),
WENA)M \/ & Wﬁ,D)2~ \/ & (39)  direct access to the positions of the poles of the analytically
' Knx ' Ky continuedS matrix. The obtained results were compared with
the eigenvalues of the effective Hamiltonigh. However, a
direct comparison is obscured by the fact that the coupling
such that the terms in the infinite spectral s{@7) decay  matrix Wis in fact energy dependent. In the standard random
asymptotically as~3*for Neumann and as~**for Dirich-  matrix approach the coupling matrix is treated as being en-
let BC. Hence the convergence is absolute for Neumann Bergy independent—a simplification that is well justified in-
while Eq.(29) converges at most conditionally. As a conse-side a small energy interval. To mimic this situation and to
quence, the numerically necessary cut off in the summatiofinimize the influence of the energy dependence of the cou-
over the internal statesintroduces large errors for Dirichlet pling matrix W we have compared the eigenvaluesHaf;
BC. with the directly evaluated resonance poles always within a
For the following considerations we will concentrate onsmall energy interval the center of which was equal to the
Neumann BC. As already mentioned, the choice of the interenergy used to evaluate the coupling matix
nal and external parts of the system is not unique, since an The energy dependence W can be taken into account
arbitrary part of the ideal waveguide can be considered paghore precisely using the relatiofl) and evaluating the
of the internal system. Increasing the length of the waveHamiltonian approach resonance poles as zeros of the func-
guide included, we decrease in fact the influence of the evajgn I+iK(N(E). We have evaluated the resonance poles
nescent modes since they are exponentially vanishing insidgsing both of the above described methods and compared the
waveguide. We have checked this relation and evaluated th@sults to the numerically exact resonances obtained by com-
time delay functions also for various waveguide parts in-plex scaling. The results are shown in Fig. 4. From this fig-
cluded into the internal system. The results remain practiyre we see that for narrow resonances the eigenvalues of
cally unchanged regardless of the length of the included parkffective HamiltoniarH o« represent a good approximation to
This demonstrates the small influence of the evanescefe resonance poles of the system and the energy dependence
modes on the resulting matrix. of the coupling matrixW can be omitted. For broad reso-
Knowing the coupling matri¥Vand using the relation Eq. npances the situation changes and the complex eigenvalues of
(5) we evaluated numerically the value of the coupling con-the effective Hamiltonian have nothing in common with the
stantg. The obtained result is in an excellent agreement withyjrectly evaluated resonance poles. This discrepancy can be
the estimated value6) for all considered types of the wave- explained as follows: A resonance localizedBat=E +il’
guide attachment leading tp~0.98. We have evaluated the represents in fact a collective mode of all bound st&esf
coupling constang also for a different shape of the billiard the internal HamiltoniarH;,, that are located inside the en-
[20] obtaining similar values fog. It has to be stressed that ergy interval~(E—T",E+T). For a broad resonance with
the estimate(36) was obtained using semiclassical argu-sjgnificantly larger than the mean spacing between the bound
ments. Our calculation shows, however, that it remains validtatesE . the number of the internal states to be included into

even in the deep quantum region. H. must therefore be very high.
The eigenvalues oHg; equation(4) are usually inter-

preted as the resonance poles and are used for the study of
the statistical properties of resonances in open quantum cha-
otic systemd7]. To check the validity of this approach we  To summarize, we have shown that the Hamiltonian ap-
have evaluated the resonance poles of the system indepgoroach to scattering, which is the basis of many important

J +

— D)=/ (D) . . . . . . .

aX\PM(O) knxanx- (38 16 17 18 19 20 21 22 23 24
Re(Energy)

TN 0)=

FIG. 4. The complex eigenvalues diy; (+), zeros of |
+iK M (x), and resonance poles obtained by the complex scaling
method Q).

For a two-dimensional biIIiardkn,kn,AZO(\/ﬁ) (n—x)

V. CONCLUSIONS
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random-matrix results on quantum chaotic scattering, leadguide, and other details of the model. Interestingly, in our
to reasonably good agreement when compared with the renodel an effective coupling negr=1 is observed already
sults of a direct calculation of th8 matrix in the case of deep in the quantum regime. Nevertheless, fluctuations
billiards with Neumann boundary conditions. We have ex-around the mean valug=1 should in general be largest for
plained the somewhat unexpected finding that the accuracy small energies and can possibly result locally in overcritical
much worse for Dirichlet boundary conditions, while it does coupling. This might be an explanation for the observed
not depend very much on other possibilities of varying theresonance trapping in billiard49-22.
auxiliary closed system used, such as the position of the Our results concerning the value of the effective coupling
attached waveguide. for chaotic systems are not restricted to billiards and apply,
Even for Neumann boundary conditions the effectivee.g., to quantum graphs as well. In these systems, a system-
HamiltonianH . based on the Heidelberg approach seems tatic way to achieve overcritical coupling for many states is to
be not very well suited for the computation of broad reso-modulate the density of states, e.g., by considering systems
nances of the system. This result does not contradict the facith band spectr@3,28].
that also for systems with time-reversal symmetry gtadis-
tical properties (_)f billiard resonances follow the predlctlon_s ACKNOWLEDGMENTS
of random-matrix theory based upon the effective Hamil-
tonian approach quite welR7], because our test goes way  Stimulating discussions with F. Dittes and D. Savin are
beyond a purely statistical analysis. gratefully acknowledged. This work has been partially sup-
Moreover, we have shown numerically and with semiclas-ported by Czech Grant No. GAAV A1048804 and by the
sical arguments that the mean dimensionless coupling for &oundation for Theoretical Physics” in Slemeno, Czech
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