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We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with
spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of
particles can show directed ballistic transport in the absence of an average force. We discuss general conditions
for such directed transport like a mixed classical phase space. A sum rule is derived which connects the
contributions of different phase-space components to transport. We show that regular ratchet transport can be
directed against an external potential gradient while chaotic ballistic transport is restricted to unbiased systems.
For quantized Hamiltonian ratchets we study transport in terms of the evolution of wave packets and derive a
semiclassical expression for the distribution of level velocities which encode the quantum transport in the
Floquet band spectra. We discuss the role of dynamical tunneling between transporting islands and the chaotic
sea and the breakdown of transport in quantum ratchets with broken spatial periodicity.
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I. INTRODUCTION

Hamiltonian systems with a mixed phase space remain a
challenge within the field of nonlinear dynamics, both clas-
sical and quantum. This is usually attributed to the intricate,
typically self-similar structure of the phase space in these
systems. There exist, however, more tangible effects which
also require a coexistence of regular and chaotic dynamics
but no particular fine structure. A prominent example is di-
rected transport: An elementary yet decisive consequence of
a mixed phase space is the existence of distinct regions that
support qualitatively different dynamics and do not commu-
nicate with each other. Directed transport may arise locally
in regular components of phase space. As a consequence of a
global sum rule, and in the absence of certain symmetries, it
can then be conferred to the chaotic component, as we will
show in this paper.

Chaotic transport in extended Hamiltonian systems is usu-
ally associated with undirected diffusion: The width of the
spatial distributionDx grows with time as some power law
sDxd2, ta with a between 0 and 2. Only recently has it been
discovered that even in the absence of a mean external gra-
dient, chaotic diffusion in driven Hamiltonian systems can be
accompanied by a directed drift. The corresponding ballistic
component of transportf1g may appear surprising on first
sight, since a hallmark of chaos is the decay of all correla-
tions including an effective randomization of the velocity
with time. However, this implies only that the mean velocity
of a typical chaotic trajectory approaches an asymptotic
value which is characteristic of the chaotic phase-space re-
gion as a whole. In the absence of additional symmetries
there is no general reason requiring this asymptotic mean
velocity to be zero.

In fact, as we shall argue in Sec. II, in systems with a
mixed phase space a sum rule requires chaotic transport to
compensate for the directed transport possibly occurring in
regular phase-space regionsf2,3g. An important conclusion
sSec. II Ed is that the ballistic chaotic transport has nothing to
do with internal structures of a chaotic phase-space compo-
nent such as cantori or other partial transport barriers. All
these complicated substructures leading to, for instance,
Lévy walks and anomalous diffusion in Hamiltonian ratchets
f1,4,5g need not be considered in detail in order to under-
stand that ballistic transport dominates for long times.

Deterministic ballistic transport due to a dynamical re-
striction of trajectories to certain phase-space regions has
been observed before in dissipative systemsf6–8g, where the
phase-space volume is contracting with time. In this situation
one speaks of deterministic ratchets because of the analogy
to the well-known stochastic ratchetssBrownian motorsd
which generate directed motion from nonequilibrium noise
f9–12g.

Throughout this paper, we disregard dissipation. Its ab-
sence, however, renders it more difficult to achieve directed
transport, since the natural time arrow determined by dissi-
pation is lost and has to be replaced by other mechanisms
breaking time-reversal invariance. On the other hand trajec-
tories can maintain a memory of their initial velocity for an
infinite time. Therefore a precise definition of aHamiltonian
ratchet is not completely straightforward. The mere fact that
in unbiased systems directed transport can exist and survive
for infinite time is trivial; just take a free particle with some
nonzero initial velocityv0Þ0. In this sense every extended
Hamiltonian system would be a ratchet.

Due to velocity dispersion an ensemble of free particles
will also spread ballistically, i.e., as fast as its center of mass
is transported. On the other hand, as pointed out above, there
exist Hamiltonian systems where transport is ballistic, but
the spreading is not. They are characterized by a locking of
the average velocity to asnonzerod value which does not*Electronic address: holger@chaos.gwdg.de
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depend on the precise initial conditions as long as they are
restricted to some finite phase-space region. For the purpose
of the present paper we regard this property as the definition
of a Hamiltonian ratchet.

Even with this restriction it is possible to construct cases
one would qualify as trivial realizations of directed transport:
In the integrable system sketched in Fig. 1, for example,
transport appears to be achieved by a mere change of frame.
For the sake of simplicity of the definition we do not attempt
to formally exclude such cases. In what follows, however,
we concentrate on extended systems with a mixed phase
space where one has to understand the interplay between
regular and chaotic transport.

Unless symmetries of the driving potential prevent itf1g,
Hamiltonian ratchets as defined above lead, without average
force, to a nonzero mean velocity of an ensemble of particles
which were initially at rest. The same applies also to the
ratchets described inf13,14g, although there is no velocity
locking and ensembles of particles do spread ballistically.
These systems are based on a mechanism that is different
from the models discussed inf1–5,15–17g and the present
paper and we will not consider them here.

For Hamiltonian ratchets under the influence of an aver-
age force we show in Sec. II F that uphill regular transport is
possible. In contrast, even an infinitesimal average force de-
stroys the chaotic drift and leads to downhill acceleration.

It comes as a rather unexpected finding that Hamiltonian
ratchets have applications on macroscopic, even geophysical
scales where apparently friction prevailsf18g. Indeed, in hy-
drodynamics, even in the presence of dissipation, restricting
the description to position space results in a Hamiltonian
form of the evolution equations if only the fluid isincom-
pressible. Specifically, in geophysical applications, a periodic
potential reflects the periodic boundary conditions on Earth
with respect to longitude, while an asymmetry in the trans-
verse coordinate is implied by the dependence of the Coriolis
force on latitude.

Going in the opposite direction, Hamiltonian ratchets may
find applications on scales where quantum effects become
important. For example, in semiconductor nanostructures
employed to investigate solid-state ratchetsf19,20g such ef-
fects were observed. A Hamiltonian ratchet with negligible
dissipation can be realized on this basis if the structure size is
further decreased, such that electronic motion occurs in the
ballistic regime. But this will even enhance quantum correc-
tions.

In Ref. f3g it was concluded that quantum Hamiltonian
ratchets can work if classical and quantum systems are both
spatially periodic such that the quantum system has a band
spectrum. Detailing our findings, we will show in Sec. III B
that quantum transport relies on the semiclassical correspon-
dence between the dynamics of wave packets and that of
classical distributions in phase space: As long as a wave
packet, started in the chaotic region of the phase space, say,
remains predominantly restricted to this region, it will be
transported with the classical mean chaotic velocity. Such
quantum-classical correspondence can be attributed to the
existence of different types of bands in the spectrum, with
eigenfunctions concentrating semiclassically on different in-
variant sets of classical phase space. Since this mechanism
crucially depends on classical phase-space structures, it can-
not be captured using a single-sor few-dband picture. There-
fore our results are not at variance with the absence of trans-
port demonstrated within such an approximationf15,16g.

However, also in the semiclassical regime, nonclassical
processes like tunneling are possible which allow transitions
between invariant sets of classical phase space. In Sec. III C
we will address the question of why this is compatible with
quantum transport unlimited in time. Only when the exact
periodicity of the quantum system is destroyed do the eigen-
functions governing the long-time dynamics ignore classical
phase-space structuresf21g such that ratchet transport be-
comes a transient phenomenon. We shall deal with this case
in Sec. III D.

In our conclusionssSec. IVd we discuss in particular vari-
ous ways of breaking the translation invariance of Hamil-
tonian ratchets and how this affects transport.

II. CLASSICAL HAMILTONIAN RATCHETS

A. The Hamiltonian of the extended system

We consider Hamiltonian systems in one dimension
which areperiodic and unbiasedin the sense specified be-
low. The Hamiltonian is of the form

FIG. 1. sad A trivial example for a Hamiltonian ratchet is a
periodic potential that is moving at a constant velocityvB.0 such

that Vsx,td=Ṽsx−vBtd. The system is integrable, since it is time
independent in the comoving reference frame. Despite the
conveyor-belt construction it is also unbiased, since the average
force in a periodic potential is always zero.sbd shows the depen-
dence of the asymptotic mean velocityv on the initial velocityv0

under the assumption that the potential is nonzero only in negligibly
small intervals. Particles with initial velocity close tovB, namely,
for msv0−vBd2/2,Vmax, are trapped inside one well of the poten-
tial and have an asymptotic velocityv=vB independent of the pre-
cise initial conditions.
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Hsp,x,td = Tspd + Vsx,td, s1d

where x and p are the canonically conjugate position and
momentum andTspd andVsx,td denote kinetic and potential
energy, respectively.

We require that thedynamicsbe invariant under integer
translations of space or time and use dimensionless variables
in which both periods are unityf22g, i.e., we assume the
following property: For any trajectoryxstd with initial con-
ditions xst0d=x0, pst0d=p0 and any other trajectoryx̃std with
x̃st0+nd=x0+m, p̃st0+nd=p0, we havex̃st+nd=xstd+m for
all t.

In the simplest case this is realized byTspd=p2/2 and a
spatially and temporally periodic potential

Vsx,t + 1d = Vsx + 1,td = Vsx,td, s2d

but this is not a necessary condition: If the potential contains
an additional termfstdx we haveV8sx+1,td=V8sx,td only,
where V8=dV/dx. Nevertheless, discrete translation invari-
ance may be satisfied for the dynamics; see Sec. II F for an
example.

We shall refer to the system as unbiased, if the force −V8
averaged over space and time vanishes,

E
0

1

dxE
0

1

dt V8sx,td = 0. s3d

In Sec. II G we will also consider systems where the kinetic
energy is a periodic function ofp such asTspd=cos 2pp for
electrons in a Bloch band. As we shall see, such systems are
always unbiased.

B. The phase space of a unit cell

Instead of the extended system represented by Eq.s1d, the
discrete translation invariance allows us to consider an aux-
iliary system restricted to a singleunit cell by imposing pe-
riodic boundary conditions atx=1, t=1. Since in this paper
both representations appear in parallel, we use different sym-
bols j;x mod 1 andt; t mod 1 for the cyclic variables of
the unit cell.

It is a standard technique for driven systemsf23g to treat
time like a spatial coordinate such that a one-dimensional
time-dependent system is mapped to a formally time-
independent problem in two dimensions. For the unit cell the
Hamiltonian obtained in this way is

Hsj,p,t,Ed = Tspd + Vsj,td + E, s4d

where E is canonically conjugate tot. This ensuresṫ
=]H /]E=1. SinceH is a conserved quantity, −Estd can be
interpreted as the energyDH that the system has gained from
the driving up to timet. Moreover, it becomes clear that the
dynamics is restricted to a three-dimensional “energy shell”
H=const, which is spanned by the variablesj, p, andt sE is
a function of these three variables and the constantHd.

The dimensionality can be reduced further by considering
Poincaré surfaces of section at some constantt which elimi-
nates the trivial flow in thet direction. In the following, we
shall discuss the main features of such stroboscopic surfaces

of section, relevant for transport in Hamiltonian ratchets. For
the moment we restrict the discussion to smooth potentials in
the sense of the Kolmogorov-Arnol’d-MosersKAM d theo-
rem f24g and take as an example the Hamiltonian

Hsp,x,td =
p2

2
+ V0sxd + xV1std s5d

with

V0sxd =
1

5.76
fsins2pxd + 0.3 sins4px + 0.4dg s6d

and

V1sxd = −
p

5.76
f4.6 sins2ptd + 2.76 sins4pt + 0.7dg. s7d

This corresponds to the parameter sets3d of Fig. 1 in Ref.f1g
when the spatial and the temporal period are scaled to unity.

The stroboscopic Poincaré section for this model is shown
in Fig. 2. We can distinguish the following three types of
motion, each corresponding to a characteristic signature in
phase space and transport.

sid At high kinetic energies the ratchet potential can be
considered a small perturbation acting on a free particle. For
this integrable limit the trajectories are confined to invariant
surfaces in phase space that have the topology of a torus.
These tori are labeled by the conserved value of the momen-
tum p and parametrized by the cyclic variablesj and t. In
the sj ,pd plane of the stroboscopic Poincaré section the tori
would consequently appear as horizontal lines.

The KAM theorem predicts the fate of a torus under a
small perturbation. It depends on whether itswinding num-
ber w is rational or not. The winding number is the ratio

FIG. 2. Typical stroboscopic Poincaré sectiont=0 for a Hamil-
tonian ratchet with noncontractible KAM tori, main chaotic sea, and
regular islands. The lettered rectangular regions support initial dis-
tributions of particles for which the corresponding velocity distri-
butions are shown in Fig. 3 below.
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between the angular velocities along the two independent
cyclic coordinates spanning the torus. In the present case,
one of these coordinates is the timet and the corresponding
angular velocity is unity by definition. For the other coordi-
natej, the angular velocity on the torus is equal to the trans-
port velocity in the extended system, measured in spatial unit
cells per time period, so thatw=v.

Almost all tori have irrational winding numbers and, ac-
cording to the KAM theorem, most of them survive an in-
finitesimal perturbation. This is visible in Fig. 2 at highupu
where we observe lines in the stroboscopic Poincaré section
which extend across the unit cell. Although the lines are
deformed by the potential they represent intact tori of regular
motion with irrational winding numberstransport velocityd.
Motion proceeds on these tori in the initial direction, without
turning points. As these tori cannot be continuously con-
tracted to a point we will call themnoncontractible.

sii d Tori with rational winding number

w = nx/mt, s8d

nx,mt integer, which comprise a set of measure zero, are
destroyed under an infinitesimal perturbation. Details of this
effect are described by the Poincaré Birkhoff theoremf24g.
Together with a small neighborhood, a rational torus decays
to a chaotic layer embedding new tori of regular motion.
These tori have a different topology, however: They are con-
tractible and appear as a set ofmt regular islands in the
stroboscopic Poincaré section. The respective centers of the
islands are formed by a single elliptic periodic orbit with
periodmt, i.e., this orbit hasmt distinct intersections with the
stroboscopic Poincaré section before it starts repeating,
shifted bynx unit cells in the extended space. In Fig. 2, we
therefore observe chains of regular islands which are sequen-
tially traversed by a trajectory. The average velocity of the
central periodic orbit and of all trajectories inside the island
corresponds to the rational winding numberv=w of the de-
stroyed torus. IfvÞ0 we speak of atransporting island.

siii d The chaotic regions surrounding the island chains at
high upu are too small to be visible in Fig. 2. With increasing
perturbation, however, the chaotic regions grow and may
coalesce. In the vicinity ofp=0 the effective perturbation is
strongest. As a result a largechaotic seadevelops. With in-
creasing resolution we find more and more islands embedded
in this sea and more and more chains of transporting islands
interrupting the strips where the intact KAM tori reside.
Such islands need not be remnants of rational tori in the
undriven system—they can appear and disappear at some
finite value of the driving potential as a result of bifurcations
of periodic orbits. Still, their transport velocity must also be
given by a rational winding number.

Conversely, we find more and more small chaotic regions
located within the regular islands. Since they are confined to
the phase-space region demarked by the outermost intact
torus encircling the island, they share the same average ve-
locity v=w, wherew is the winding number of the island.

The phase-space regions enumerated above are most ad-
equately discussed in terms ofinvariant sets: a subset of the
phase space invariantas a wholeunder the dynamics, irre-
spective of any reshuffling possibly occurring inside. For ex-

ample, any regular torus in the three-dimensional phase
space of the unit cell is invariant under the dynamics. Tra-
jectories initialized on the torus do not leave it, and vice
versa. This invariant two-dimensional surface separates the
remaining phase space into two invariant sets of nonzero
measure. Moreover, any region in phase space confined by a
number of tori is an invariant set of the dynamics. In particu-
lar, this applies to the chaotic sea, which is bounded from
below and above by two noncontractible KAM tori and by
the outermost tori of the embedded regular islands.

For our purpose the limitation of chaotic trajectories to a
compact region of phase space will be crucial. In the ex-
ample discussed above this is a consequence of the KAM
scenario. In systems where the KAM theorem is not valid
our theory applies as long as there is another mechanism
leading to a compact chaotic phase-space component. An
example of this type will be discussed in Sec. II G.

C. Velocity distribution

Although the systems4d is restricted to a single unit cell,
it contains the complete information about transport in the
extended systems1d. The velocityv=dH/dp=T8spd along a
trajectory is the same in both cases provided the initial con-
ditions are equivalent, i.e.,j0=x0 mod 1 at t=0. Therefore
the velocity is the appropriate quantity to connect transport
in the extended system to the unit cell and we describe trans-
port in terms of the velocity distribution for an ensemble of
particles. An ensemble is specified by a normalized initial
distribution r0sj0,p0,t0d in the phase-space unit cell. The
variablet0 is part of the initial conditions since it matters at
which phase of the driving force a trajectory was started. It
can indeed be physically meaningful to consider ensembles
for which t0 is not sharp, for example to model a situation
where particles continuously enter the system.

For any ensembler0 and time t we define the time-
averaged velocity distribution as

Pr0,tsvd =
1

t
E

0

t

dt8E
−`

+`

dp0E
0

1

dj0E
0

1

dt0r0sj0,p0,t0d

3d„v − T8spt8;j0,p0,t0
d… s9d

with the normalizationedv Psvd=1. If we consider an en-
semble in the extended system, initially localized atx=0,
then at a later timet its spatial distribution will be given in
terms of the velocity distribution byrtsxd= t−1Pr0,tsx/ td. For
long times the center of mass moves with the mean velocity

vr0 =E
−`

+`

dv vPr0,`svd, s10d

where the existence ofPr0,`svd=limt→`Pr0,tsvd is assumed.
The behavior of the velocity distribution is qualitatively

different for initial distributionsr0 which are restricted to
different invariant sets of the phase space. This is demon-
strated in Fig. 3. We used as initial distributions the charac-
teristic functionsxa,b,c,d of the rectangles marked in Fig. 2,
approximated by a large number of trajectories with initial
conditions distributed randomly inside the corresponding re-
gion.
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In the simplest case,r0 has support inside a regular island
sdistributionsb andc in Fig. 3d. According to the last section,
the average velocity of all trajectories inside an island is
equal to the winding numberw of the island. Consequently
we have

Pr0,`svd = dsv − wd s11d

and observe sharp peaks in Fig. 3 distributionsb andc whose
width is within the bin size of the histogram already att
=100. Figure 3 distributionc is an example for a transporting
island,wÞ0. Any distributionr0 initialized inside this island
will be transported ballistically with velocityw=−1. At the
same time the width of the distribution does not grow ballis-
tically. As stated in the Introduction, we consider this behav-
ior as the defining property of a Hamiltonian ratchet.

For an ensemble initialized in the chaotic seasFig. 3 dis-
tribution ad the situation is similar. Although here the veloc-
ity distribution shows an appreciable width at finite times,
the comparison oft=100 and 10 000 suggests that this width

goes to zero ast→`. We can explain this behavior using the
concept of ergodicity. Ergodicity means that for any function
defined on phase space and for almost all trajectories the
time average along the trajectory coincides with an average
over the accessible phase space. It is usually assumed that
this property applies to the chaotic components of systems
with a mixed phase space, although proofs of such a state-
ment can be given only in exceptional situationsf25g. For
our purpose we can use the velocityv=T8spd as the function
on phase space and obtain for any nonsingular initial distri-
bution inside the chaotic sea, such as the rectangular regiona
of Fig. 2,

Pr0,`svd = dsv − vchd s12d

with the mean chaotic velocity

vch = Vch
−1E

ch
dr dj dp T8spd. s13d

The phase-space integral extends here over the whole chaotic
sea of the spatiotemporal unit cell, andVch=echdr dj dp de-
notes its volume.

In the following section we shall discuss a method to
evaluate Eq.s13d. For the moment it suffices to say that, in
the absence of specific symmetries, there is no general reason
to expect that the chaotic velocity predicted by this equation
is zero. Therefore, also the chaotic sea provides an example
for Hamiltonian ratchet transport.

For both regular islands and chaotic components the
asymptotic velocity distribution is ad function that does not
depend on the precise location of the initial phase-space dis-
tribution within the invariant set. The velocity distribution
obtained from a region with surviving noncontractible KAM
tori shows a fundamentally different behavior, analogous to
the case of a free particle: it maintains a finite width fort
→` and a complicated internal structuresdistribution d in
Fig. 3d. Moreover, the detailed properties of the asymptotic
velocity distribution depend on the precise shape and loca-
tion of the initial ensemble. Hence, according to our defini-
tion, noncontractible tori do not show ratchetlike transport.

D. Transport for invariant sets and sum rule

There is an interesting reformulation of Eq.s13d which
allows us to calculate the chaotic mean velocity in terms of
regular trajectories onlyf3g. For any subsetM of the unit
cell, we define its contribution totransport, TM, as phase-
space volume times average velocity,

TM = VMvM =E dj dp dr xMsj,p,tdT8spd, s14d

where xMsj ,p,td is the characteristic function ofM. Note
that in this definitionM is not necessarily an invariant set.
However, if M denotes either the chaotic sea or a regular
island, the phase-space-averaged velocityvM can be identi-
fied with the asymptotic mean velocity of almost all trajec-
tories inside the invariant set, as described in the previous
section.

Transport has to be distinguished from the familiar con-

FIG. 3. Distribution of time-averaged velocities, Eq.s9d, for
four different initial distributionsa–d ssee Fig. 2d. The chaotic dis-
tributiona was sampled by 10 000 trajectories, while for each of the
regular distributionsb–d only 100 trajectories were used. For each
trajectory the velocity was averaged up tot=100 and the resulting
distributions are displayed with solid linesa–d. Fora andd also the
distributions att=10 000 are shownsbold linesd.
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cept of current which refers to the probability flow that
passes per unit time through a surface dividing phase space.
Here we are interested in transport along thex direction.
Therefore we consider the current at a pointj0. The value of
the current depends on the positionj0 and the timet0 where
it is measured. In terms of the densityrtsj ,pd, it is given as

Isj0,t0d =E
−`

+`

dp rt0
sj0,pdT8spd. s15d

In order to relate this current to the transport of an invariant
set M, Eq. s14d, we substitute the density of the invariant
measure

rtsj,pd =
xMsj,p,td

AM,t
s16d

whereAM denotes the area ofM in a stroboscopic Poincaré
section. Integration of the density over one period of the
driving leads to the time-averaged current ofM at j0,

IMsj0d =
1

AM
E

0

1

dtE
−`

+`

dp xMsj0,p,tdT8spd, s17d

where we have used the conservation of phase-space area in
Hamiltonian systems,AM,t=AM. An additional integration
overj0 yields the relation between the current in thex direc-
tion and transport

TM = AMIM . s18d

Here we have used that the time-averaged current is indepen-
dent of the positionj0, as implied by the continuity equation
for the invariant measure. Note that for this reason we could
in principle define transport also without thej integration.

By choosing the density as in Eq.s16d and weighting the
contribution of each invariant setM by its areaAM, we
achieve that the resulting quantity, transport, is additive.
Namely, with the definitions14d, we have for the union of
two or more disjoint sets, i.e., forM =øiMi, with Mi ùMj
=x for all i Þ j ,

TM = o
i

TMi
. s19d

We will apply thissum rulefor transport to the layer in phase
space which contains the chaotic sea and the embedded regu-
lar islands. It is bounded from below and above by two
KAM tori. For simplicity we assume that they can be repre-
sented by two functionspu/lsj ,td. We find from Eq.s14d

Tlayer=E
0

1

djE
0

1

dtE
plsj,td

pusj,td

dp T8spd

=E
0

1

djE
0

1

dtfT„pusj,td… − T„plsj,td…g

= kTlu − kTll , s20d

i.e., the transport of the layer is simply given by the kinetic
energy T, averaged over the two bounding KAM tori. In
short, since the underlying phase-space distribution
xMsj ,p,td is flat, the transport is determined by the outline

defining the subsetM. This applies toanysubset of the phase
space confined by two noncontractible tori.

On the other hand, according to Eq.s19d the transport of
the stochastic layer is equal to the contributions from the
invariant manifolds it comprises

kTlu − kTll = Vchvch + o
i

Vivi . s21d

Equation s21d can be used to predict the chaotic transport
velocity. In practice this works as follows.

sid In the stroboscopic Poincaré section we determine the
location of the limiting KAM toripu/l and the location of the
limiting tori of all major regular islandsi together with their
winding numberswi.

sii d In order to determine the phase-space volumes enter-
ing Eq. s21d it is in fact sufficient to know the areas in the
stroboscopic Poincaré section. The Liouville theorem applied
to the time-dependent Hamiltonian Eq.s1d f24g ensures that
such an area is conserved by the dynamics. The three-
dimensional volume within the phase space of the unit cell is
simply the area at any given moment in time, multiplied by
the temporal periodV=A31. Areas in the Poincaré section
are determined by approximating the corresponding invariant
manifold by a polygon with corners obtained from running a
trajectory on the outermost torus. Numerically, an approxi-
mation to this torus can be found by zooming into the
Poincaré section.

siii d The kinetic-energy averageskTlu,l over the bounding
KAM tori are obtained by sampling a torus with a long tra-
jectory, and determining the integrals Eq.s20d numerically.
Note that this is not equivalent to a time average over such a
trajectory as the invariant density on the torus is not constant.

sivd Putting all the information together we find

vch =

kTlu − kTll − o
i

Aiwi

Alayer− o
i

Ai

. s22d

Compared to the above procedure, the straightforward
method of determining the chaotic transport velocity by run-
ning a very long trajectory has the disadvantage that its ac-
curacy is hard to control. The trajectory must be long enough
to sample the chaotic phase-space component ergodically,
and there is no way to tell from a single trajectory whether
this has been achieved with sufficient accuracy. The reason is
that the chaotic component typically contains partial barriers
scantorid, which may appear closed in a simulation over fi-
nite time. The error made by ignoring the phase-space region
behind the partial barrier can in principle be arbitrarily large.
Also the converse error is possible: For long simulations the
accumulating numerical inaccuracy may drive a chaotic tra-
jectory beyond an intact KAM torus. By using a stroboscopic
Poincaré section such errors are substantially reduced. In the
picture obtained from many relatively short trajectories, sam-
pling the entire phase space, one can judge if there are two
nearby chaotic regions which may actually form a single
invariant set. It is then sufficient to increase the resolution
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selectively in a small portion of the phase space, which is
possible with relatively small computational effort.

E. Chaotic transport and Lévy walks

Equations22d shows that the basic mechanism underlying
chaotic ratchet transport is the existence of KAM tori and
regular islands which prevent a chaotic trajectory from sam-
pling the whole classical phase space. Unless there are spe-
cial symmetries, the velocity average over the chaotic sea is
generically nonzero and it is determined solely by the bound-
aries of this invariant set. Besides ergodicity, no reference to
any details of the dynamics within the chaotic set is needed
to explain and quantitatively predict the observed asymptotic
chaotic transport velocity.

Nevertheless substructures inside the chaotic component
of the phase space in general do exist and leave their hall-
mark in transport properties. Lévy walks, in particular, have
attracted some attention in the context of Hamiltonian ratch-
ets f1,4,5g. These are the episodes when a chaotic trajectory
is trapped in the vicinity of a transporting island, close to the
hierarchical structure of smaller and smaller islands and sur-
rounding cantori. Such hierarchical regions are virtually un-
avoidable in a mixed phase spacesfor remarkable exceptions
see f25,26gd. In the context of ratchets they were termed
“ballistic channels”f4,5g and are frequently located in the
vicinity of the KAM tori confining the chaotic sea from be-
low and above, i.e., in regions of relatively high velocity.
Therefore Lévy walks are easily observed in numerical trans-
port experiments. Some care must be taken to avoid the
wrong conclusion that ballistic channels and Lévy walks are
necessary for the existence of substantial chaotic transport or
can completely account for it.

To study this question in some detail, let us start from the
sum rule Eq.s19d and decompose the chaotic transport into
contributions from disjunct subsets of the chaotic seaC
=ø jCj. We haveVchvch=o jV jv j andVch=o jVj such that

vch =

o
j

Vjv j

o
j

Vj

. s23d

Because of ergodicity inside the chaotic component the
phase-space volumesVj in Eq. s23d can be replaced by the
fraction of time a typical chaotic trajectory spends inside
subsetj or, equivalently, by the probability to enter subsetj
times the average survival time in it. Doing so we immedi-
ately arrive at a formula similar in spirit to Eq.s3d of Ref. f4g
or Eq. s6d of Ref. f5g. At the same time it is still exact and
does not depend on the character of the subsetsj used to
subdivide the chaotic region. As in Refs.f4,5g, this decom-
position can, e.g., consist of a few prominent ballistic chan-
nels and some remaining chaotic “bulk” region. Our main
point here is that in general it isnot possible to approximate
this remainder by an undirected and purely diffusive dynam-
ics, i.e., to setv j =0 for the corresponding subset in Eq.s23d.

For this purpose we will follow the analysis suggested in
Refs. f4,5g but apply it to a model with different parameter
values. The Hamiltonian is

Hsp,x,td =
p2

2
− 2p coss2pxd

+ s2pd2xF2 coss2ptd − 4 cosS4pt +
p

2
DG

s24d

and the stroboscopic Poincaré sectionfFig. 4sadg shows the
typical features discussed in Sec. II B. The velocity distribu-
tion of the chaotic component is shown in Fig. 4sbd for vari-
ous times. In contrast to Fig. 3 distributionc we have chosen
here an ensemble of initial conditionsr0,xch uniformly
covering the entire chaotic sea. Numerically this has been
achieved by relying on ergodicity. We ran a single long cha-
otic trajectory xstd s0ø tø43105d and usedxst8d with t8
=0,1,2,… as the initial conditions of the ensemble. For

FIG. 4. sad Stroboscopic Poincaré section att=0 for the system
of Eq. s24d. sbd For an initial distributionr0,xch the distribution of
time-averaged velocities is shown at various timest. As t→` it
evolves to a narrow peak around the asymptotic mean velocity
sdashed line fort=105d. scd From all distributions shown insbd the
average velocityv is computed after the contributions from the
ballistic channels have been removed by restrictingPsvd to the
interval −28øvø +18. The resulting valuessdotsd are for all times
close to the asymptotic mean velocitysdashedd.
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each such initial conditionvt=fxst8+ td−xst8dg / t is the veloc-
ity averaged over a time spant. For fixed t the probability
distributionPsvtd is shown in Fig. 4sbd. It is equivalent to the
propagator used in Ref.f5g for visualizing internal details of
the chaotic dynamics. Peaks in the propagator can be inter-
preted as signatures of partial transport barriers within the
chaotic sea. They are visible as long as the parametert of the
velocity distribution is smaller than the time scale for cross-
ing the barrier. As expected, for long timesst.105d only a
narrow peak survives at a velocity which is in good agree-
ment with the prediction of the sum rulesdashed line fort
=105d.

Since the shape of the velocity distribution depends
strongly on time, any definition of ballistic channels and the
corresponding subdivision of the chaotic invariant set must
be highly arbitrary. We single out the most prominent trans-
porting islands which are visible in Fig. 4sad close to the
lower and the upper boundaries of the chaotic sea. They have
winding numbersw−,30 andw+,20, respectively. In these
regions we observe particularly sharp peaks in the velocity
distribution for t&103 which are signatures of the corre-
sponding Lévy walks. Following Ref.f5g we continue by
averaging the velocity distribution over a region that ex-
cludes all such ballistic channelsf−28øvø +18 for the
solid line in Fig. 4scd; note that thisv interval is defined with
respect to the average velocity and therefore is not com-
pletely inside the chaotic layer in the Poincaré section shown
in Fig. 4sadg. The result represents the contribution from the
bulk of the chaotic sea. It is definitely nonzero and in fact
quite close to the asymptotic transport velocitysdashed lined,
irrespective of the time scale and the precise cutoff values
used. In other words, the average chaotic transport in this
example is mainly due to the bulk region while the ballistic
channels and their Lévy walks contribute small corrections
only.

This shows that only the invariant sets, as featured in the
sum rule Eq.s19d, provide an appropriate concept for the
description of the asymptotic directed transport.

F. Biased ratchets

Can Hamiltonian ratchets be used to transport particles
against an external force? As explained in Sec. II A, a con-
stant force does not destroy the periodicity of the dynamics,
and we can still resort to a unit cell to understand the trans-
port properties. The key question is, which invariant sets
may survive in presence of an additional potentialVbiassxd
=cx. In Fig. 5sad we compare two trajectories forc=0.13 to
the familiar phase-space portrait atc=0 sFig. 2d. One of
them was initialized on a large transporting island with wind-
ing numberw=1. Clearly, this island is still present although
it is distorted and shifted in position. The winding number of
the island is conserved since it is a topological quantity re-
stricted to rationales. Hence all trajectories inside the islands
have asymptotic mean velocityv=1 and we may conclude
that Hamiltonian ratchets can transport uphill. This is con-
firmed by the full line in Fig. 5sbd, which shows position vs
time for the same trajectory.

The other trajectory was initialized in a phase-space re-
gion which forc=0 contains noncontractible KAM tori with

positive winding numbers. We observe that forc=0.13 the
momentum of this trajectory is decreasing without bounds
under the influence of the constant bias force, as naive ex-
pectation suggests. Only in a short time interval, whenpt
<0, the driving potential has a relevant influence on this
trajectory. For long times it behaves essentially like a free
particle accelerated by the bias potential. Thereforexstd for
this trajectory is approximately parabolicfdashed line in Fig.
5sbdg.

From the presence of this single accelerated trajectory we
can already conclude that no regular KAM tori survive in the
biased systemsat least not in the phase-space region dis-
played in Fig. 5d, since these would represent impenetrable
barriers to transport in thep direction. Note that the KAM
theorem does not apply to this situation: A constant force
does not represent a smooth perturbation for the unit cell

FIG. 5. sad Stroboscopic Poincaré section for the model Eq.s5d
as in Fig. 2. On top two trajectories of a system with the additional
potentialVbiassxd=cx with c=0.13 are shown. One trajectorysbig
dotsd was started atp=10, i.e., in a phase-space region which is in
the original system filled by noncontractible regular tori. In the
presence of the bias such tori are absent and the trajectory keeps
losing momentum without bounds. In the extended system this tra-
jectory is similar to a parabolafdashed line insbdg. The other tra-
jectory fthick line in sad and sbdg is part of a regular island with
winding numberw=1, i.e., in the extended system this trajectory is
transporting uphill without losing momentum. The inset ofsad
shows the shape of the regular island at different magnitudes of the
bias potential. Atc*0.15 the island disappears. Also islands with
negative or zero winding number do exist in the biased ratchetsnot
shownd.
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since the potential is not periodic. In fact there is a simple
argument suggesting that an arbitrary small mean force de-
stroys all noncontractible KAM tori. Assume that there is a
KAM torus of the formpsj ,td periodic inj andt. Consider
its average momentum at some given moment in time,

pstd =E
0

1

dj psj,td. s25d

As we show by a straightforward calculation in Appendix A
the increment ofp after one temporal period is given by

pst + 1d − pstd = −E
0

1

dj dt V8sj,td. s26d

Clearly, this increment must vanish for an invariant KAM
torus. However, the right-hand sidesRHSd of Eq. s26d is not
zero for a biased system with a mean force. We conclude that
no extended KAM tori survive and that therefore the chaotic
sea is no compact invariant set anymore. Hence an arbitrarily
small bias potential will destroy the chaotic ratchet transport
in models like Eq.s5d while uphill transport can be realized
by preparing initial conditions on regular islands of the phase
space.

G. A minimal model

According to the previous sections, the decisive property
of a Hamiltonian ratchet is an asymmetric mixed phase
space. Based on this insight we can now construct minimal
models for Hamiltonian ratchets which have this property
and are otherwise as simple as possible. Probably the sim-
plest type of model with a mixed phase space are area-
preserving maps generated from kicked one-dimensional
Hamiltonians of the form

Hsx,p,td = Tspd + Vsxdo
n

dst − nd. s27d

Integrating the equations of motion over one period of the
driving we obtain an explicit map expressing positionxn and
momentumpn immediately before the kick att=n in terms of
the values before the preceding kick

pn+1 = pn − V8sxnd, xn+1 = xn + T8spn+1d. s28d

The most prominent example is the kicked rotor

Tspd =
p2

2
, Vsxd =

K

2p
coss2pxd, s29d

one of the best-studied paradigms of Hamiltonian chaosf27g.
The phase space of this model is periodic with period 1 both
in x and in p. Therefore one can define a compact unit cell
with areaDx Dp=1.

The kicked rotor found an important experimental realiza-
tion in the dynamics of cold atoms in pulsed laser fields
f28,29g. In this experimental setup the momentum instead of
the position is the experimentally accessible quantity and one
is therefore interested in transport along the momentum di-
rection. Apart from this purely formal difference, atom optics
experiments promise to be ideal realizations of Hamiltonian

ratchets. For this purpose one has to modify the phase space
of the unit cell such that transporting islands arise and the
symmetryx→−x, p→−p of the kicked rotor is destroyed.

In fact transporting islands appear already in the standard
kicked rotor at kicking strengthsK*2pm. They are referred
to as “accelerator modes”f27g and leave traces in the dynam-
ics which were also experimentally observedf29g. In the
kicked rotor these accelerator modes always come in pairs
transporting in opposite directions and therefore do not lead
to transport in the chaotic sea. However, this symmetry can
be destroyed, e.g., by applying more than a single kick per
period or by using asymmetric potentials in Eq.s27d. It is not
expected that the details of these manipulations will be of
importance for the resulting chaotic transport since, as we
have shown in the previous sections, the latter is determined
by the underlying phase-space structure only.

In the remainder of this paper we therefore study an ab-
stract model in the form of Eq.s28d. The functionsTspd and
Vsxd are selected without reference to any particular experi-
mental setup and only guided by the desire to have a simple
phase-space structure with a large transporting island. We
choose

Vsxd = sx mod1 − 1/2d2/2,

Tspd = upu + 3 sins2ppd/s4p2d. s30d

The resulting map

pn+1 = pn − sxn mod1d + 1/2,

xn+1 = xn + sgnspn+1d + 3 coss2ppn+1d/2p s31d

is considered on a cylinder with transport along the extended
x axis while p;p+1 is here a cyclic variable that can be
represented byp[ f−1/2, +1/2d. If the map is restricted to
one unit cellx→j=x mod1 we obtain the phase-space por-
trait shown in Fig. 6sad. It shows one large regular island
around the stable fixed pointj0=1/2,p0=−1/4 with winding
numberw0=−1. Due to the termupu in Tspd the phase space
has no reflection symmetry aroundp=0 and also no other
momentum-inverting symmetry such that there is no equiva-
lent island transporting in the positive direction.

There are also no extended regular tori and the whole unit
cell must be considered as the analog of the compact stochas-
tic layer in the continuously driven models which we consid-
ered in the previous sections. Consequently the LHS of the
sum rule Eq.s21d vanishes, 0=vchVch+s−1dVreg. In other
words the total transport, averaged over the whole available
phase space, vanishes for this system which confirms that it
is unbiased. A considerable simplification results from the
fact that here the chaotic transport velocity can be computed
from the relative phase-space volume of the single regular
islandAreg=1−Ach alone,

vch = Areg/s1 − Aregd. s32d

From the Poincaré section Fig. 6sad we find Areg
=0.117±0.001; thusvch=0.133±0.001. This is in very good
agreement withvch=0.1344±0.0003 obtained directly from
the spatial distribution of 104 trajectories after 23104 kicks.
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Figure 6sbd shows the convergence of the chaotic velocity
distribution to ad function concentrated at this value, in
accordance with Eq.s11d.

We would like to stress again that the directed chaotic
transport in this ratchet model is a consequence of the phase-
space structure and cannot be explained by the asymmetric
kinetic-energy function alone. We have verified this fact by
repeating the analysis for a larger potential 5Vsxd. Then the
phase space is completely chaotic, yet despite the asymmet-
ric function Tspd no transport is observed.

III. QUANTUM RATCHETS

We now turn to the investigation of quantized Hamil-
tonian ratchets, i.e., driven one-dimensional Hamiltonian
quantum systems which are classically periodic both in space
and in time. We restrict attention to systems in which the
phase-space volume of a unit cell is finite and phase space is
composed of a chaotic sea with one or more embedded regu-
lar islands, as in the minimal ratchet model discussed above.
This restriction leads to a finite Hilbert-space dimension
which simplifies the numerical calculations. Moreover, we
have seen that the dynamical processes relevant for transport
are restricted anyway to the compact chaotic layer of the unit
cell. We therefore expect models with finite Hilbert-space
dimension to capture also the essential features of quantized
ratchet transport.

A. Floquet operator and eigenstates

For a system periodic in time, one can still construct a
dynamical group with a single timelike parameter, which,

however, now becomes discrete, measuring time in units of
the period of the driving. It is generated by the unitary evo-
lution operator over one period,

Ûst + 1,td = T̂ expS−
i

"
E

0

1

dt ĤstdD , s33d

whereT̂ effects time ordering. The computation of this Flo-
quet operator is simplified considerably ifHstd is a kicked
Hamiltonian as in Eq.s27d. Then the time evolution from
time t=m−« immediately before the kickm to time t=m
+1−« immediately before the following kick can be ex-
pressed in terms ofTspd andVsxd as a product

Û = e−iTsṗd/"e−iVsx̂d/" s34d

of two operators which are diagonal in the position or the
momentum representation, respectively. The time evolution
of a state is obtained by successive multiplications by phase
factors and fast Fourier transforms effecting a basis change.
An additional simplification results if we considerp as a
cyclic variable p;p+1, as is the case with the minimal
ratchet model Eq.s31d to which our numerical results will be
restricted. In this case the wave function is periodic inp with
csp+1d=cspd and consequently the conjugate variablex is
restricted to the discrete valuesxn=nh. Here,h denotes the
dimensionless ratio of Planck’s constant to the phase-space
area of the classical unit cell which we set to unity in Eq.
s31d. It is a well-known peculiarity of models with this prop-
erty that the periodicity of the classical potentialVsx+1d
=Vsxd for at leastV8sx+1d=V8sxd in the case of our minimal
modelg does not necessarily lead to a spatially periodic Flo-
quet operator. The reason is that the potential is now re-
stricted to discrete valuesVn=Vsxnd=Vsnhd and periodicity
is achieved only if there is an integerN with Vn+N=Vn which
implieshN=M with another integerM. Henceh=M /N must
be rational. In contrast, in periodic systems with infinite
phase-space volume such as Eq.s5d, the Floquet operator is
spatially periodic irrespective of the value of Planck’s con-
stant. In the following sections we shall use valuesh=1/N to
ensure that the quantum system has the same spatial period-
icity as the classical model. Only in the last Sec. III D do we
consider modifications of our results for irrational values of
h. They are to be interpreted as a spatial disorder that does
not affect the classical phase-space structure but destroys the
perfect periodicity of the corresponding quantum system.

A double periodicity, in both space and time, requires to
combine the corresponding representations of quantum me-
chanics appropriate for these symmetries, i.e., Bloch and
Floquet theory, respectively. The eigenvalue equation

ufast + 1dl = Ûufastdl = e−2pieaufastdl s35d

defines Floquet statesufal and quasienergiesea[ f0,1d
f30g. For the systems considered herea is a discrete index
1øaøN.

For the discrete spatial translation group there is a con-
tinuous set of representations parametrized by the quasimo-
mentumk[ f0,1d. In the simultaneous presence of temporal
periodicity, the Bloch theorem now applies to Floquet states,

FIG. 6. sad Poincaré sectionp vs j of a unit cell for the map
given by Eq.s31d. sbd Velocity distributionPsvd of 104 trajectories
started at random on the linep=0, x[ f0,1d in the chaotic sea of
the system and iterated until 102 and 104, respectively.

SCHANZ, DITTRICH, AND KETZMERICK PHYSICAL REVIEW E71, 026228s2005d

026228-10



fa,ksx + 1,td = e2pikfa,ksx,td s36d

so that both eigenstates and eigenphases carry a double index
sa ,kd. The support of theFloquet band spectrum, in all cases
considered here, consists of continuous lines in the two-
dimensionalsk,ed space; cf. Fig. 7sad. Since the spectrum is
periodic with period 1 in bothe and k, these variables are
canonically conjugate to a pair of integerssnx,mtd which
measure position and time in units of the spatial and tempo-
ral periods, respectively. For this reason the band structure
and the time evolution of the spatial distribution are related
by a double Fourier transformation, as we shall show in Sec.
III B.

We have seen that the decisive property of classical
Hamiltonian ratchets is the existence of invariant sets of the
phase space with different average velocities. Traces of the
classically invariant sets are manifest in the quantum dynam-
ics only if the quantum uncertainty allows their resolution,
i.e., if " is much smaller than the relevant phase-space struc-
tures. From here on we shall restrict our attention to this
semiclassical regime. Figure 7sad shows an example of a
Floquet band spectrum for a Hamiltonian ratchet, the mini-
mal models31d. This system has two distinct invariant sets in
phase space, the chaotic sea and one transporting island em-
bedded in it. According to the semiclassical eigenfunction
hypothesisf31,32g one expects that in the semiclassical re-
gime almost all eigenfunctions condense on one of the in-
variant phase-space sets. Figures 7sbd and 7scd show the Hu-
simi representationsf33g of typical eigenstates. Indeed, one
of them is concentrated inside the regular island while the
other populates the chaotic sea, avoiding the island. Associ-
ated with these two types of eigenstates are two types of

bands: regular bands appear in the spectrum as straight lines
with slope dea /dk<−1, chaotic bands are fluctuating and
have on average a positive slope. In the subsequent section,
we are going to make this relation between bands and sub-
sets of the phase space more precise. We use it to establish a
sum rule for transport in quantum ratchets analogous to the
classical sum rule discussed in Sec. II D.

B. Semiclassical transport in terms of Floquet bands

1. Quantum sum rule

The basic relation expressing the velocity of a Floquet
state in terms of the quasienergy band to which it belongs is

va,k = kkfa,kuv̂ufa,kll =
dea,k

dk
. s37d

In the present case of a periodically driven system, the ex-

pectation value of the velocity operatorv̂=T̂8sp̂d includes a
time average over one period of the drivingkk¯ll
;e0

1dtk¯l. The second member of Eq.s37d then follows
from applying the Hellmann-Feynman theorem, which was
proven for time-periodic systems inf30g.

A wave packet localized on the scale of a single unit cell
or narrower corresponds to a nearly homogeneous distribu-
tion in k. The corresponding mean velocity for a whole band
a vanishes,

kvalk =E
0

1

dk
dea,k

dk
= 0, s38d

as is implied by the periodicity of the bands. Averaging also
over energy, i.e., summing over the bands, we find as veloc-
ity average over the total Hilbert space of the unit cell,

kvlk,e =
1

N
o
a
Kdea,k

dk
L

k
= 0. s39d

Equation s39d can be considered the quantum-mechanical
counterpart of the classical sum rule for transport, Eq.s21d.
Effectively, the quantum sum rule like the classical one re-
fers to a finite subset of the phase space. Here, the cutoff is
introduced by the finite dimension of the basis used to span
the Hilbert space of the unit cell in calculating the band
spectrum.

The crucial step for this quantum sum rule is the averag-
ing along a given banda over the entire Brillouin zone, Eq.
s38d. In particular, this amounts to regarding all band cross-
ings, however narrow, as avoided crossings. Ifk were con-
sidered a parameter with a fictitious time dependence, the
quantum time evolution under a slow change ofk would
respect avoided crossings in exactly this manner. Therefore
these bands are referred to asadiabatic bandsf34g.

It follows, conversely, that a finite mean velocity can be
obtained if modified bands are constructed by connecting
band segmentsacrossall avoided crossings with a gap below
some threshold. Such bands determine the time evolution
under a fast change ofk and accordingly are calleddiabatic
f34g. They are not associated with a fixed band indexa and
therefore need not be periodic ink. So for individual diabatic

FIG. 7. sad Quasienergy band spectrum of the minimal ratchet
model Eq.s31d at h−1=32. Regular bands appear as approximately
straight lines with negative slope.sbd The Husimi representation of
the Floquet eigenstates corresponding to points on these lines are
concentrated inside the regular island.scd Most other eigenfunctions
spread over the entire chaotic sea but avoid the regular island. The
corresponding bands have strongly fluctuating slopes.sdd Distribu-
tion of band slopessvelocity expectation valuesd at h−1=128. The
sharp peak atv=−1 corresponds to the regular bands, the broader
peak to the chaotic bands. The velocity of the classically chaotic
transport is marked by an arrow.
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bands Eq.s38d does not apply, their mean velocity can be
finite. We argue in the following that indeed it is diabatic
bands, not adiabatic ones, which semiclassically correspond
to invariant sets of classical phase space, and to which a
relation between band structure and directed transport must
refer.

Figure 7 provides numerical evidence to justify the as-
signment of invariant sets to diabatic bands. For example, the
regular island with winding number21 is associated with
straight-line segments in the spectrum, corresponding to a
quantum velocityva,k=−1 with very small fluctuations. In
contrast, chaotic regions are represented by “wavy” band
sections with strongly varying slope to which a precise ve-
locity value cannot be assigned. In this sense, it is legitimate
to talk of “regular” vs “chaotic” diabatic bands.

In the following we will reconsider the sum rule Eq.s39d
using diabatic bands and express the different contributions
in terms of the invariant sets of the classical phase space.
First we note that replacing in Eq.s39d adiabatic by diabatic
bands amounts to interchanging band indices at avoided
crossings, thus it results at most in a permutation of terms
within the sum but does not affect the sum rule as a whole.
We can therefore group diabatic-band terms in Eq.s39d ac-
cording to the classical invariant set they pertain to,

0 = o
a[ch. bands

Kdea,k

dk
L

k
+ o

r[reg. bands
Kder,k

dk
L

k
. s40d

In the semiclassical limit the respective numbers of terms in
the sums are given by the relative fraction of the phase space
occupied by the corresponding invariant sets, i.e.,Nch= fchN
for the chaotic bands andNr = f rN for the various embedded
regular islandsr. N=h−1 is here the total number of bands,
i.e., the Hilbert-space dimension per unit cell. Assuming that
the classical phase space contains only a single chaotic com-
ponent we can characterize the associated diabatic bands by
a mean slopekvchl and haveoa[chkdea,k/dklk=Nchkvchl.

For the regular bands, the double periodicity of thesk,ed
space allows us to definewinding numbersin the same way
as we did in Sec. II B for the topology of regular islands in
the conjugatesx,td space. For the same reason as with the
classical winding numbers these topological quantum num-
bers have to be rational, i.e.,wqm=n/m if the band closes
upon itself aftern revolutions in thee andm revolutions in
the k direction. As the regular states are localized on the
invariant tori inside the island, their velocity expectation
sband sloped in the semiclassical limit approaches the regular
transport velocity. This leads to the conclusion

Kder

dk
L

k
< wr

qm = wr
cl = vr

cl. s41d

Avoided crossings modify the band slopes in a range which
is negligible in the semiclassical limitssee Sec. III Cd, while
the winding numbers as topological quantities are not af-
fected at all. In other words, the winding numberwr

qm of a
diabatic bandr pertaining to a classical regular islandr is
identical to the classical winding numberwr

cl of that island,
Eq. s8d. We have now

0 = Nfchkvchl + No
r

f rvr
cl. s42d

Note that fch, f r, andvr
cl are all classicalquantities. Conse-

quently, also the quantum transport velocitykvchl must coin-
cide with its classical counterpart

kvchl = vch
cl . s43d

This is the main result of the quantum-mechanical sum rule.
We stress again that it pertains to the semiclassical regime
since otherwise the notion of diabatic bands is not appli-
cable.

Figure 7sdd confirms Eq.s43d qualitatively. It shows the
distribution of quantum velocitiessband slopesd for our mini-
mal ratchet model. We observe two well-separated peaks,
one for the regular bands atvr

cl=−1 and one atvch
cl for the

chaotic bands. The region separating the two peaks corre-
sponds to the band slopes in the vicinity of avoided crossings
between regular and chaotic bands. The weight of the distri-
bution in this intermediate region decreases withh and van-
ishes in the semiclassical limith→0.

2. Form factor

Our analysis based on winding numbers can be applied to
predict the mean quantum transport velocity in the semiclas-
sical regime from the classical value. The band spectra, how-
ever, contain more detailed information about quantum trans-
port, encoded in the spectral two-point correlation functions.
A double Fourier transforme→mt, k→nx and subsequent
squaring of the spectral density translates two-point correla-
tions in the bands into the entire time evolution of the spatial
distribution on the scale of the temporal and spatial periods,
respectively.

As a suitable quantity to establish this relation, we recur
to the generalized form factor introduced and studied inf35g
for completely chaotic systems. We define it as

Ksnx,mtd =
1

N
kuusnx,mtdu2l s44d

with

usnx,mtd =E
0

1

dk e2piknxtrUk
mt

= o
a=1

N E
0

1

dk e2pisknx−ea,kmtd

= o
a=1

N

uasnx,mtd. s45d

N denotes the Hilbert-space dimension per unit cell, which is
the phase-space area of a unit cell in units of Planck’s con-
stanth. Uk is the N3N Floquet operators33d evaluated at
Bloch numberk. The integersnx,mt are the discrete variables
canonically conjugate tok and e, respectively, that is, the
unit cell number relative to the starting point, and time in
units of the period of the driving. The averagek¯l in Eq.
s44d is essential in order to remove the otherwise dominant
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fluctuations around the mean value. It can be taken over a
narrow time range or over an ensemble of quantum systems
corresponding to approximately the same classical system.

As we will now show, the form factor is related, on the
one hand, to the classical dynamics of a distribution which
initially covers homogeneously the phase space of a single
unit cell. On the other hand, it contains the quantum velocity
distribution as a limiting case. Therefore it is an appropriate
starting point for a semiclassical theory of ratchet transport.

We assume we are sufficiently close to the semiclassical
limit N@1 such that we can consider the band spectrum in
the diabatic approximation. Moreover, in the semiclassical
limit it is justified to neglect correlations between diabatic
bands pertaining to different invariant setssregular or cha-
oticd unless they are related by symmetries. This allows us to
write the form factor as an incoherent sum of the respective
contributions, because the averaging in Eq.s44d suppresses
uncorrelated cross terms. We obtain

Ksnx,mtd = o
r

Krsnx,mtd + Kchsnx,mtd, s46d

the sum running over all regular invariant setssislands and
island chainsd.

In Appendix B we obtain the semiclassical expression

Krsnx,mtd = f rmrdmrnx−nrmt
s47d

for the form factor of a chain of regular islands with winding
numberwr =nr /mr. It seems that the form factor is enhanced
by a factormr for an island chain as compared to a single
island of equal total size, but this is not the case. In Eq.s47d,
dmrnx−nrmt

=1 holds only at the unit cellnx=snr /mrdmt=vrmt to
which a classical trajectory, started in the regular island at
nx=0, has traveled in timemt. In particular, asnx is an inte-
ger,mt must be an integer multiple ofmr. That is,Krsnx,mtd
is finite only everymrth period of the driving, such that the
average contribution to the form factor is independent of the
periodmr of the island chain.

For the chaotic contribution to the form factor we can
resort to a semiclassical theory which has been developed for
completely chaotic systems inf35,36g. In order to apply it to
a system with a mixed classical phase space we assume the
validity of the ergodic sum rulef37g for the chaotic compo-
nent. Then the result off35,36g remains essentially un-
changed, and the form factor is given in terms of the classical
velocity distribution of the chaotic component as

Kchsnx,mtd =
mt

mH
PchS nx

mt
,mtD smt & mHd. s48d

To be precise,Pchsv ,td entering this equation is the chaotic
classical propagator for a uniform distribution inside the cha-
otic sea, as introduced in Sec. II E. Its definition is Eq.s9d
with r0=xch. Since Eq.s48d is based on the diagonal ap-
proximation f38g, i.e., correlations between different classi-
cal orbits have been neglected, it is valid only for short times
and breaks down beyond the Heisenberg timemH<Nch
< fchN of the chaotic component.

3. Quantum velocity distribution

A complementary approximation to the form factor for
long times can be achieved following again Refs.f35,36g.
The chaotic bands fluctuate as a function ofk with an am-
plitude approximately given by the spacingDe<Nch

−1 be-
tween them. For times beyond the Heisenberg time, these
fluctuations give rise to phase oscillations in the integrand of
Eq. s45d which exceed 2p. Therefore we can perform thek
integration in stationary-phase approximation and obtain

uasnx,mtd = o
ea,ks
8 =nx/mt

Îi/uea,ks
9 mtuexps2pifksnx − ea,ks

mtgd,

s49d

i.e., only those pointsk=ks contribute to the integral where
the derivative of the phase of the integrand vanishes, 0=nx
−ea,ks

8 mt. These are isolated points in the spectrum which can
be assumed to vary independently upon averaging in Eq.
s44d. Therefore we can neglect all cross terms when squaring
the sum of contributions from different points of stationary
phase and obtain for the form factor

Kchsnx,mtd =
1

mHmt
o
a

o
ea,ks
8 =nx/mt

uea,ks
9 u−1. s50d

Now that we are rid of all phase factors it is very instructive
to rewrite the result again as an integral over the Bloch num-
ber k,

Kchsnx,mtd =
1

mHmt
o
a
E

0

1

dk dSea,k8 −
nx

mt
D . s51d

This equation has two important consequences. First we note
that up to normalization the form factor beyond the Heisen-
berg time is nothing but the distribution of band slopes, alias
quantum velocities,

Ksnx,mtd , uPquantsvduv=nx/mt
smt . mHd, s52d

which is shown for the minimal model in Fig. 7sad. As in the
classical case, this velocity distribution is the natural quantity
to describe a system with directed ballistic quantum transport
and the form factor can be considered a useful generalization
of it.

Second, Eq.s51d implies that the form factor at any time
mt beyond the Heisenberg timemH can be expressed via
scaling by the form factor right at the Heisenberg time

Kchsnx,mtd =
mH

mt
KchSmH

nx

mt
,mHD =

mH

mt
PchS nx

mt
,mHD

smt . mHd. s53d

In the second line we have used the semiclassical approxi-
mation Eq.s48d for mt=mH. It is valid only up to the Heisen-
berg time, but according to Eq.s51d it determines the form
factor also beyond. Of course, the validity of Eq.s53d de-
pends on applying both the short-time and the long-time ap-
proximations for the form factor right at the Heisenberg time
where they are on the verge of breaking down. This interpo-
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lation procedure has been corroborated by comparison to re-
sults from numerics and from supersymmetry inf35,36g. We
expect that it applies in the present case of a transporting
chaotic component as well.

The two consequences of Eq.s51d combine to the conclu-
sion that the distribution of quantum velocities in the chaotic
component of the band spectrum is equal to the distribution
of time-averaged classical velocities for an ensemble of par-
ticles filling the chaotic component of the phase space homo-
geneously. Information on the quantum system enters into
this classical distribution only via the point in time at which
this velocity distribution is evaluated—it must be chosen as
the Heisenberg timeNch of the chaotic component. Before
writing down this result we note that the restriction to the
chaotic component is actually not necessary, since for the
embedded regular islands the same result applies trivially
because of Eq.s41d. Hence we have

Pquantsvd = Pclasssv,mHd, s54d

for a stochastic layer including one chaotic component and
one or more embedded regular islands. Equations54d is a
nontrivial result because it establishes quantum-classical cor-
respondence for the velocity distributions and thus for
asymptotic long-time transport properties. We stress again
that this result was derived semiclassically within the diago-
nal approximation. It would be very interesting to explore
possible corrections due to neglected interferences between
classical periodic orbitssakin to the weak-localization cor-
rection in the standard form factorf38gd, but at present the
methods to deal with such correctionsf39g are not suffi-
ciently developed to treat the type of system we are dealing
with here.

C. Long-time quantum transport and dynamical tunneling

1. Transport of wave packets

So far we have considered transport only in terms of sta-
tionary quantities like eigenstates and band spectrum. Using
the obtained results we can now describe the transport of
arbitrary wave packets. The asymptotic quantum transport
velocity of a wave packet is an average over all band slopes,
weighting each Floquet state by its overlap with the initial
state. To see this we write the wave packet as a superposition
of Floquet states

csx,td = o
a
E

0

1

dk ca,kstdfa,ksxd

= o
a
E

0

1

dk ca,ke
−2piea,ktfa,ksxd, s55d

calculate the expectation valuekxstdl of position as a func-
tion of time ssee Appendix Cd, and obtain

kxstdl =E
−`

+`

dx xucsx,tdu2 = v`t + ostd, s56d

with

v` =E
0

1

dko
a

uca,ku2va,k. s57d

Consider now a wave packet localized initially within a
single unit cell and, inside this unit cell, on one of the invari-
ant sets of the classical dynamics. Then the weightsuca,ku2
are approximately homogeneous ink but concentrated on the
diabatic bands corresponding to the supporting invariant set.
This is illustrated in Fig. 8. Consequently, the asymptotic
velocity is an average over the corresponding band slopes.
For example, for a wave packet started inside the chaotic sea
we expect a value close to the classical chaotic transport
velocity because this is the average slope of the chaotic
bands; see Eq.s43d. We confirm this semiclassical result in
Fig. 9, where the average position of two chaotic wave pack-
ets is shown over a large time interval and for two different
values ofN=h−1. In agreement with Eq.s56d, we observe a
linear dependence on time with very small fluctuations, i.e.,
asymptotically there is indeed directed ballistic quantum
transport. The precise value of the velocity depends on the
initial conditions but these fluctuations decrease with de-
creasingh and the average approaches the classical transport
velocity. Typically the quantum velocity for a semiclassical
chaotic wave packet is slightly above the classical value.
This is a consequence of the hierarchical phase-space regions
around the embedded islands which communicate with the
main chaotic sea only via leaky cantori. Depending onh,
quantum transitions across some of these cantori are possible
only by tunneling, i.e., they are almost blocked. Therefore
the part of the chaotic component enclosed by these cantori
effectively belongs to the regular islandf40g and, according

FIG. 8. Quasienergy band spectrum of the minimal ratchet
model ath−1=32. The linewidth encodes the overlapzkfa,kuclz2 of
the corresponding Floquet stateufa,kl with an initial wave packet
ucl. In sad this wave packet is a coherent state located in the chaotic
part of the phase space of a single unit cell; insbd it is concentrated
on a torus inside the major regular islandfcf. Fig. 6sadg.
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to the sum rules21d, this enhanced island size is compen-
sated by a correspondingly larger chaotic transport velocity.

2. Dynamical tunneling

On first sight it may surprise that the division of classical
phase space into invariant sets can influence the long-time
quantum dynamics. After all, classically impenetrable barri-
ers can be crossed in quantum dynamics by tunneling. Tun-
neling is known best for the case of energetic barriers, e.g.,
in a double-well potential. Dynamical tunneling is the gen-
eralization of this phenomenon to barriers in phase space
f41g and was recently demonstrated experimentallyf42,43g.
If in quantum dynamics no strict barriers exist, the wave
packet should explore the entire accessible phase space for
sufficiently long time and consequently directed transport
should vanish, at least on average. We have seen in the pre-
vious section that this is not the case. So what is the role of
tunneling in Hamiltonian ratchets?

To answer this question we consider a wave packet that is
initially prepared inside the regular island within the unit cell
nx=0. Classically, such an initial distribution is simply trans-
ported along the chain of regular islands with a velocity cor-
responding to the winding numberwr, i.e., Prsx+wrt ,td
=Prsx,t=0d. This property is conserved in the quantum dy-
namics if we neglect the narrow avoided crossings in the
band spectrum which account for the difference between
adiabatic and diabatic bands. Let us demonstrate this for the
regular island in our minimal model which has winding num-
berwr =−1. The diabatic regular bands are straight lines with
slopewr, i.e.,

er,k = er,0 + wrk. s58d

As illustrated in Fig. 8sbd, a localized initial wave packet can
be constructed from such a band by a uniform superposition
of all states

Csx,t = 0d =E
0

1

dk fr,ksxd. s59d

We restrict attention to times that are a multiple of the period
mr of the central orbit inside the island. Thenwrt is an integer
which indicates one particular unit cell. We measurex rela-
tive to that unit cell and find for the wave packet

Csx + wrt,td =E
0

1

dkexps− 2pier,ktdfr,ksx + wrtd

=E
0

1

dkexpf2piskwr − er,kdtgfr,ksxd

= exps− 2pier,0tdCsx,0d. s60d

This shows that the wave packet is indeed transported like
the corresponding classical distribution. It has the asymptotic
velocity wr and does not show any spreading, i.e., there is no
signature of dynamical tunneling within the approximation
of diabatic bands.

We conclude that tunneling out of an island in classical
phase space is encoded in the avoided crossings between the
regular and the chaotic bands. These avoided crossings show
up in the regular bands as deviations from the straight line
er,0+vrk. Close to an avoided crossing the regular bands are
bent toward the chaotic bands, i.e., the actual slope isk de-
pendent and slightly smaller thanwr. Using this qualitative
information about the shape of the regular bands we can
make a prediction for the shape of the wave packet at very
large timest→`. In this regime the wave packet can be
calculated from Eq.s55d in stationary-phase approximation.
We find

CsX + x,td =E
0

1

dkexpf2piskX− er,ktdgfr,ksxd

= o
er,k8 =X/t

Îi/uer,k9 tuexps2pifker,k8 − er,kgtdfr,ksxd.

s61d

We have again decomposed the position into a large integer
X denoting the unit cell and the remaining fraction 0,x
,1. fr,ksxd is considered a slowly varying prefactor of the
rapidly oscillating phase. The points of stationary phase in
Eq. s61d select the Bloch states whose superposition yields
the wave packet at timet and positionX. It is no surprise that
these are exactly the points for which the slope of the band
corresponds to the velocityX/ t. Due to avoided crossings,
the actual slope of the regular bands is smaller thanwr.
Hence for the transition to the unit cellX=wrt where all
classical probability is concentrated, no points of stationary
phase with realk exist: To leading order this process is for-
bidden in quantum mechanics. There might be complex so-
lutions of the equationer,k8 =wr, but then the exponent in Eq.
s61d has a real part and the contribution will be exponentially
small in t, which is indeed observed in Fig. 10sbd. The main
part of the wave packet is concentrated not in the “classical”
unit cell but rather at positions for which real points of sta-
tionary phase exist in Eq.s61d. These correspond to veloci-

FIG. 9. Position vs time for wave packets initialized as coherent
states inside the chaotic part of the phase space of the minimal
ratchet model Eq.s31d. Two different values ofh and two different
initial conditions are used. The dotted line shows the classical cha-
otic transport velocity.
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ties distributed narrowly around a value slightly below the
classical velocity. Due to this dispersion in the velocities,
induced by avoided crossings, the wave packet will spread
ballistically in time and will be peaked behind the classically
expected positionfFig. 10sadg.

For a wave packet initially prepared in the chaotic part of
a unit cell the influence of tunneling is much less pronounced
snot shownd. Although the narrow avoided crossings with
regular bands do modify the chaotic bands as well, the exis-
tence of points of stationary phase in an expansion similar to
Eq. s61d is unaffected: due to the wide avoided crossings
between themselves, the chaotic states have a large variation
in their velocities around the classical value anyway.

We have thus identified the role of tunneling in Hamil-
tonian ratchets. It leads to avoided crossings between regular
and chaotic statessor between regular states with different
winding numbersd. In the dynamics of initially localized
wave packets tunneling shows up mainly in the evolution of
regular states, which slightly lag behind the position ex-
pected from classical considerations. We stress again that
tunneling is not able to hinder directed ballistic transport of
such wave packets even for infinite time.

An interesting and important special case are systems
with a symmetry-related pair of countermoving regular is-
lands like the kicked rotor in the presence of accelerator
modes. Dynamical tunneling between such island pairs was
demonstrated experimentallyf42,43g. It is crucial to under-
stand the difference between our argumentation above and
this situation. First we note that a pair of symmetry-related
islands isnot analogous to a symmetric double-well poten-
tial. In the latter case all eigenstates are superpositions of left
and right. Below the barrier top, their eigenenergies form
quasidegenerate doublets and thus contribute to tunneling. In
the case of countermoving islands this applies only to the
vicinity of avoided crossings between the corresponding
bands where indeed they form a doublet. Away from these

isolated and semiclassically small regions ink space the
bands are approximately straight lines butwith opposite
slopes, i.e., there is no systematic degeneracy. In this paper
we consider wave packets initially localized inside one unit
cell. In k space such a wave packet is extended. Therefore its
weight in the vicinity of avoided crossings, where it contrib-
utes to tunneling, is negligible. By contrast, in the experi-
ments mentioned above the wave packets extend initially
over many unit cells. Therefore, ink space they may well be
concentrated right at avoided crossings. Then, and only then,
dynamical tunneling is the expected consequence.

D. Quantum transport in the presence of disorder

In this last section we will describe some modifications of
the quantum transport in a situation, when the exact quantum
periodicity is destroyed by weak static disorder. As explained
above in Sec. III A this can be realized easily within our
minimal ratchet model by choosing an irrational value ofh.
In this case the Bloch theorem does not apply any more and,
on a large scale, we expect dynamical localization of wave
packets and eigenstates. The properties of the eigenstates and
in particular the failure of the semiclassical eigenfunction
hypothesis in this case have been studied inf21g. We will
here concentrate on the evolution of wave packets in the
presence of disorder. In Fig. 10sgray lined we display the
shape of a wave packet which was initialized in the regular
island of unit cellX=0 at time t=1000. Initially the wave
packet follows the classical evolution, i.e., it is transported at
velocity v=−1 and loses probability due to tunneling. The
process of tunneling out of the island is essentially the same
as in the case of a periodic system with rationalh. This is
demonstrated by Fig. 10sbd and also by the inset of Fig.
10sad, where one can see that the probability remaining in-
side the classical unit cell is the same for both systems. How-
ever, the fate of the probability which has tunneled out of the

FIG. 10. sad Black line: Wave packet prepared in the regular island of the unit cellx=0 and propagated to timet=1000 in the minimal
ratchet model Eq.s31d with h−1=16. The classical probability would be restricted to the unit cellx=−1000, while the quantum wave packet
has tunneled out of this “classical” unit cell and starts spreading. However, there is a large peak lagging slightly behind the classically
expected position. Gray line: Same for irrationalh−1=16+s. In this case the Floquet operator has no spatial periodicity. The part of the wave
packet outside the classical unit cell localizes and develops an asymmetric envelope with approximately exponential tails. Inset: The
probability to remain inside the classically expected unit cellx=−1000 is the same for rational and irrationalh. sbd Due to dynamical
tunneling the quantum probability in this “classical” unit cell decays exponentially as a function of time. With respect to this decay the
periodic model withh−1=16 is almost indistinguishable from the aperiodic model with irrationalh−1=16+s.

SCHANZ, DITTRICH, AND KETZMERICK PHYSICAL REVIEW E71, 026228s2005d

026228-16



island is entirely different from the periodic case. We see in
Fig. 10sad that the wave packet develops exponential tails
which are characteristic of localization. Unlike the periodic
case, the maximum of the wave packet is not close to the
classical expectation but rather close to the origin, i.e., the
disorder prevents quantum transport despite the underlying
classical ratchet mechanism. The latter is manifest, however,
in the asymmetric shape of the wave packet which has a
much longer tail in the direction of classical transport.

Similarly, disorder does also affect wave packets that are
initialized in the chaotic sea. Figure 11sad shows the velocity
expectation value for such a wave packet at two different
values of the effective Planck’s constanth. There is an initial
period whenkvl,vch, but then the velocity drops to zero
because the wave packet tunnels into the island and finally
occupies the whole available phase space. The time for this
process is expected to scale ast,ec/h f44g. As Fig. 11sbd
shows, this is also the time scale for which the quantum
ratchet shows transport in the presence of disorder. This
maximum ratchet operation timetmax can be defined as the
time at which the velocity of a wave packet falls below a
certain threshold. In Fig. 11sbd log10tmax is seen to depend
approximately linearly onh−1. Hence, in the deep semiclas-
sical regime the quantum ratchet can work over an exponen-
tially long time even in the presence of static disorder.

IV. DISCUSSION

The study of ratchets has largely been motivated by the
interest in the physical principles of intracellular transport.
Motor molecules, driven by chemical energy, are moving
along chain molecules whose length is of the order of the cell
size, and which consist of millions of units concatenated in a
highly ordered manner, resembling the crystal order encoun-
tered in inorganic solids. It is therefore natural to model them
as one-dimensional, infinitely extended potentials with exact
spatial translation invariance, but with reflection symmetry
manifestly broken to define a preferred direction of transport.

While the breaking of mirror symmetry is crucial to ob-
tain directed transport, the role of translation invariance ap-

pears circumstantial, at most of heuristic importance for the
theoretical description. Translation invariance has been indis-
pensable, however, in order to achieve first analytical and
numerical results on directed transport in ratchets. In the
present context of Hamiltonian systems, it allowed us to
show that directed transport comes about by counterpropa-
gating phase-space flows within regular and chaotic compo-
nents of systems with a mixed phase space. Moreover, quan-
tum ratchets are obtained by quantizing Hamiltonian ratchets
in the framework of Bloch theory; they exhibit transport at
similar rates as their classical counterparts, at least in the
semiclassical regime.

Real systems showing directed transport, biological or
physical, though, break translation invariance in various
ways and to various degrees, the only exception being sys-
tems where the spatial coordinate is cyclic, as in biological
“rotation motors” or pumping devices in a closed configura-
tion f45g. In the following we discuss a number of typical
deviations from spatial periodicity and their consequences
for transport. Since quantum systems are far more sensitive
to the presence or absence of symmetries than classical ones,
the question concerning imperfections of translation invari-
ance becomes even more crucial on the quantum level.

Experimental realizations of Hamiltonian ratchets, as in
optical lattices or in solid-state devices, always show a cer-
tain amount ofdisorder, in the form of small stochastic dif-
ferences between the unit cells. Classically, smooth spatial
disorder, if it is not too strong, will not completely disrupt
the phase-space structures underlying transport on short time
scales; thus it has only a minor effect on transportf46g. For
long times, however, we expect that transport is destroyed. In
extended quantum systems arbitrarily weak randomness in
the potential immediately leads to localization. As we show
in Sec. III D, even a type of disorder that is invisible in the
classical dynamics entails a breakdown of quantum transport
on a time scale proportional to the localization length. It
should be kept in mind, however, that localization as a quan-
tum coherence effect is counteracted, in turn, by incoherent
processes caused by the unavoidable coupling to ambient
degrees of freedom, or similarly by a “noisy” driving that
breakstemporalperiodicity. While it is well known that in
this way, incoherence partially restores diffusive transport in
systems with dynamical localizationf47g, its effects ondi-
rectedtransport remain to be explored.

The presence of aspatially homogeneous forcebreaks
translational invariance in a more controlled yet radical man-
ner. Rather than forming an unavoidable nuisance, it may be
imposed intentionally to extract work from a ratchet. More-
over, it allows us to define astall forceas the external bias
just sufficient to bring transport to a standstillf48g, and to
ascribe an efficiency to ratchets. In contrast to disorder, a
finite mean potential gradient forms a perturbation of un-
bounded amplitude, and thus radically changes the structure
of the classical ratchet phase space. Still, as explained in Sec.
II F, directed regular transport reacts smoothly on an external
bias, i.e., it requires a gradient of the order of those present in
the original periodic potential to be completely suppressed.
On the quantum level, additional complications arise in that
eigenstates become metastable and eigenenergies corre-
spondingly complex. This situation can be handled in a

FIG. 11. sLeftd Averaged velocity expectation values of wave
packets initialized in the classically chaotic region atsx0,p0d
=s0,0.25±0.05d. Beyond tloc, the velocity oscillates around zero.
sRightd Time tmax at which the averaged velocity expectation value
falls short of a given limit under variation ofh. For numerical
reason, we chose two different values forvlim.
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framework similar to scattering theoryf49g. Its application to
ratchets is under way.

Finally, in most physical setups, transport takes place be-
tween two “terminals,” typically modeled as electron reser-
voirs. This amounts to confining the ratchet proper to a finite
section of space—yet another elementary way to break trans-
lational symmetry. Taking it into account would allow one to
make contact with a different, but closely related paradigm
of directed transport:Pumpsare devices that channel a well-
defined amount of charge, mass, etc., per cycle of an applied
force from one terminal to the otherf50,51g. Obviously,
pumps can be considered as ratchets reduced to a finite num-
ber of unit cells, or conversely, ratchets could be constructed
by concatenating an infinite number of pumps or equiva-
lently by closing the pumping circuit. The only difference
lies in the kind of model usually studied in these respective
contexts, namely, fast drivings resulting in a chaotic dynam-
ics in one case, slowly driven potential wells that resemble
peristaltic pumps in the otherf50g. But this is an artificial
distinction: It has been shown recently that driven chaotic
scattering systems, employed as pumps, also generate di-
rected transport if all relevant binary symmetries are broken
f52g.

In order to study ratchets as realistic devices clamped be-
tween reservoirs at given temperatures and chemical poten-
tials, however, another crucial building block is missing, a
quantum statistical theory of transport under strong time-
dependent driving far from equilibrium. For first approaches
to this problem from the points of view of quantum scatter-
ing and quantum transport theory; see Refs.f53,45g, respec-
tively.
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APPENDIX A: CHANGE OF MEAN MOMENTUM
OF A KAM TORUS

In this appendix we consider a noncontractible KAM
torus that can be specified by the functional dependence of
the momentum on position and timepsj ,td. Note that the

existence of such a function is an assumption which simpli-
fies our reasoning.

We consider the average of the functionpsj ,td along the
torus and replace the integral representation of this quantity,
Eq. s25d, by a Riemann sum overN→` discrete pointsjn
=n/N, pn=psjn,td,

pstd < o
n=1

N

sjn+1 − jndpn. sA1d

Similarly we introduce a discrete time incrementdt and find
that theN phase-space pointssjn,pn,td in Eq. sA1d evolve to

sj̃n, p̃n,t+dtd with

j̃n = jn + pndt, p̃n = pn − V8sjn,tddt. sA2d

Now we use these new points to discretize the integral rep-
resentingpst+dtd. In this way we obtain an expression for
the time derivative ofp, which we evaluate to leading order
in dt and N−1 and then transform back to an integral. We
obtain

d

dt
pstd <

1

dt
o
n=1

N

fsj̃n+1 − j̃ndp̃n − sjn+1 − jndpng

=
1

dt
o
n=1

N HF 1

N
+ spn+1 − pnddtG

3fpn − V8sjn,tddtg −
1

N
pnJ

< o
n=1

N H−
1

N
V8sjn,td + spn+1 − pndpnJ

<
1

N
o
n=1

N

h− V8sjn,td + pnp8sjn,tdj

< E
0

1

djH− V8sj,td + psj,td
]

]j
psj,tdJ

=E
0

1

djH− V8sj,td +
1

2

]

]j
p2sj,tdJ

= −E
0

1

dj V8sj,td. sA3d

For the last line we have used the periodicity of the function
psj ,td with respect toj. By integration with respect tot we
find Eq. s26d which was the purpose of this appendix.

APPENDIX B: GENERALIZED FORM FACTOR
FOR AN ISLAND CHAIN

In this appendix we derive Eq.s47d. We consider the con-
tribution to the form factor from one particular chain of regu-
lar islandsr. If the winding number iswr

cl=nr /mr then inside
a unit cell this island chain consists ofmr islands which are
traversed in sequence. In the semiclassical limit, we associate
sdiabaticd bands with indexa to the island chain. These
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bands consist of straight-line segments with the slopewr
q

=wr
cl; cf. Eq. s41d. The segments are connected such that the

diabatic band as a whole is periodic ine andk, with periods
nr andmr, respectively. It is easy to see that for a given value
of k there aremr equidistant segmentssvalues of the quasien-
ergyd pertaining to the same diabatic banda. Semiclassically,
the number of states associated with the island chain for
given k is approximatelyf rN where f r is the fraction of the
phase space occupied by the island chain as a whole andN
=h−1 is the total number of bands. It follows that the number
of complete diabatic bands associated with the island is
f rN/mr.

To integrate over a diabatic band consisting of many
straight segments it is convenient to consider instead an ex-
tended Brillouin zone in which the band corresponds to a
single straight line

er,a,k = Ser,a,0 +
nr

mr
kD mod1, k [ f0,mrd. sB1d

In this way we can perform thek integration in Eq.s45d and
find

uasnx,mtd =E
0

mr

dk e„2pihknx−fer,a,0+snr/mrdkgmtj…

= mre
−2pier,a,0mtE

0

1

dk e2pismrnx−nrmtdk

= mre
−2pier,a,0mtdmrnx−nrmt

. sB2d

For the contribution of the island chainr to the form factor
we have now

Krsnx,mtd =
1

N
3KU o

a=1

Nfr/mr

mre
−2pier,a,0mtdmrnx−nrmt

U2L ,

sB3d

i.e., we have to perform a sum over quasienergies at fixed
Bloch numberk=0 which can be done in the same way as
for the spectrum of eigenenergies pertaining to regular states
of an autonomous systemf54,55g. We assume the dynamics
within the island to deviate sufficiently from harmonic vibra-
tions around its central orbit. Then the spectrum of quasien-
ergieser,a,0 will not be equidistant and the phases in Eq.sB3d
from different a can be assumed uncorrelated in the semi-
classical limit. This allows us to replaceuoa¯u2 by the num-
ber of terms in the sum, which finally yields Eq.s47d.

APPENDIX C: WAVE PACKET TRANSPORT

We compute the average position of a wave packetcsx,td
for long time t@1. First we write the wave packet as a su-
perposition of Floquet eigenstatesfa,ksxd with quasienergy
ea,k,

csx,td = o
a
E

0

1

dk ca,kstdfa,ksxd

= o
a
E

0

1

dk ca,ke
−2piea,ktfa,ksxd, sC1d

where

ca,k =E
−`

+`

dx fa,k
* sxdcsx,t = 0d. sC2d

The integral representing the expectation value ofx̂ for the
wave packetsC1d can be split into two contributionsj, X
corresponding to length scales within a unit cell and over
many unit cells, respectively,

xstd =E
−`

+`

dx xucsx,tdu2 =E
0

1

dx o
n=−`

+`

sx + nducsx + n,tdu2

= jstd + Xstd. sC3d

Naturally, the contribution from the dynamics inside the unit
cells is bounded from above by the size of the unit cell

jstd =E
0

1

dx xo
n=−`

+`

ucsx + n,tdu2 ø E
0

1

dx o
n=−`

+`

ucsx + n,tdu2 = 1

sC4d

sthe last equality expresses the normalization of the wave
packetd. Thereforej is irrelevant for directed ballistic trans-
port.

Evaluating the term that describes the wave packet on
large scales, we use the Bloch theorem to switch from posi-
tion representation to the conjugate variablek, where a spa-
tial shift corresponds to differentiation. We have

ncsx + n,td = no
a
E

0

1

dk ca,kstdfa,ksx + nd

= o
a
E

0

1

dk ca,kstdfa,ksxdne2pikn

= o
a
E

0

1

dk ca,kstdfa,ksxd
d

dk

e2pikn

2pi

= − o
a
E

0

1

dk
e2pikn

2pi

d

dk
ca,kstdfa,ksxd.

The last line follows from partial integration and the period-
icity in k of e2piknca,kstdfa,ksxd. Inserting this into

Xstd =E
0

1

dx o
n=−`

+`

nucsx + n,tdu2

and decomposing also the complex conjugatec*sx+n,td into
Floquet states, we find
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Xstd = −E
0

1

dx o
n=−`

+`

o
a,a8

E
0

1

dkE
0

1

dk8
e2pisk−k8dn

2pi

3 ca8,k8
* stdfa8,k8

* sxd
d

dk
ca,kstdfa,ksxd

= −
1

2pi
E

0

1

dxo
a,a8

E
0

1

dk

3 ca8,k
* stdfa8,k

* sxd
d

dk
ca,ke

−2piea,ktfa,ksxd.

The last line follows here from Poisson summation overn. In

this expressiond/dk acts on a product of three terms, but as
t→` the dominant contribution comes from the derivative
of the exponential. Neglecting the other two terms which are
bounded, and using the orthonormalization of Floquet states
we finally obtain Eqs.s56d and s57d.

For higher moments of the spatial distribution the argu-
ment can be repeated and an analogous result is obtained

kfx − xstdgml = tmo
a
E

0

1

dkuca,ku2Sdea,k

dk
Dm

+ Ostm−1d.
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