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Scars on Quantum Networks Ignore the Lyapunov Exponent
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We show that enhanced wave function localization due to the presence of short unstable orbits and
strong scarring can rely on completely different mechanisms. Specifically we find that in quantum
networks the shortest and most stable orbits do not support visible scars, although they are responsible
for enhanced localization in the majority of the eigenstates. Scarring orbits are selected by a criterion
which does not involve the classical stability. We obtain predictions for the energies of visible scars and
the distributions of scarring strengths and inverse participation numbers.
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One of the most striking ways in which the underlying
classical dynamics of a chaotic system manifests itself in
the corresponding quantum behavior is the scar phe-
nomenon [1-10]. A scar is a quantum eigenfunction
with excess density near an unstable classical periodic
orbit (PO). Such states are not expected within random-
matrix theory (RMT), which predicts that wave functions
must be evenly distributed over phase space, up to quan-
tum fluctuations [11]. Experimental evidence and appli-
cations of scars come from systems as diverse as
microwave resonators [6], quantum wells in a magnetic
field [7], Faraday waves in confined geometries [9], open
quantum dots [8] and semiconductor diode lasers [10].

Quantum networks (graphs) are established models in
the field of mesoscopic physics, from which most of the
above examples are drawn, as well as in many other areas
including molecular and mathematical physics and quan-
tum computation (see [12—15] and references therein). In
recent years they have become one of the most prominent
tools in quantum chaos because they allow one to study
with simple means the applicability of RMT and its
limitations due to system-specific properties [14-16].
For example, it was shown recently [5] that statistics of
the bulk of graph eigenfunctions [including, e.g., the left
eigenstate in Fig. 1(a)] conform with the existing theories
describing the effect of short unstable periodic orbits on
the localization properties of wave functions.

Therefore it is surprising that the same does not apply
to the small but important group of strongly scarred
eigenstates [Fig. 1(a), right], which we study in this
Letter. We show that, contrary to common intuition and
accepted theories [1-5], the shortest and least unstable
orbits of the system produce almost no visible scars,
although they are responsible for enhanced localization
within the bulk of states. We derive a condition, Eq. (7)
below, selecting orbits relevant for strong scarring from
topological information only and without any reference
to the Lyapunov exponent (LE). Based on this insight we
are able to give a criterion for the energies at which strong
scars are to be expected, Eq. (9), and describe their
statistical distribution, Eq. (12). In view of the numerous
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and diverse applications of quantum networks [12-16],
these main results should be of broad interest in their own
right. On top of this, some important conclusions general-
ize beyond graphs. In particular, our results provide clear
evidence for the fact that enhanced wave function local-
ization due to the presence of short unstable orbits and
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FIG. 1 (color online). Statistical properties of eigenstates for
fully connected graphs with different valencies v = V — 1. The
eigenstates were obtained by diagonalization of the bond-
scattering matrix, Eq. (4), and a statistical ensemble was
generated by choosing random bond lengths. (a) The bond
intensities of two representative eigenstates are shown with a
gray scale for a typical state (left) and a scar on a triangular PO
(right). (b) Probability distribution of the inverse participation
numbers (IPN), showing a steplike cutoff at J = 1/6 that can
be attributed to scarring on triangular orbits. (c) The bulk of
the IPN distribution shows scaling according to Eq. (2). (d)
The quantum return probability and a classical approxima-
tion (*) based only on the period-two orbits. (e) Rescaled
and integrated distribution of triangle scars P, (8) =
B! [2d5'PY)(8"). The dashed line has slope 1, corresponding
to the theoretical prediction, Eq. (12).
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strong scarring can in principle rely on completely un-
related mechanisms and can also leave distinct traces in
statistical measures such as the distribution of IPN.

Following the quantization outlined in [14] we con-
sider graphs which consist of V vertices connected by a
set of B bonds. The number of bonds emanating from a
vertex j is its valency v;. A basis state on the network is
specified by a directed bond d = [i — j], i.e., an ordered
pair of connected vertices i, j. Hence a quantum wave
function is just a set of 2B complex amplitudes a,, nor-
malized according to 3 ,;|la,|*> = 1. The standard local-
ization measure is the IPN

2B
I =72 lagl* )]
d=1

Ergodic states which occupy each directed bond with the
same probability have J = 1/2B and up to a constant
factor depending on the presence of symmetries this is
also the RMT prediction. In the other extreme J = 1
indicates a state which is restricted to a single bond
only, i.e., the greatest possible degree of localization.
Figure 1(b) shows the distribution of I for fully con-
nected graphs. Some features of this distribution are
explained by the original scar theory of Heller [1]
and extensions of it [2,5]. The main idea is to connect
localization properties of eigenfunctions to the dynamics
of the system. For example, the identity (I)=
limy_. 7 [T di{P(1)) expresses the mean IPN in terms of
the quantum return probability (RP) P(r), averaged over
time and initial states. It is then argued that the short-
time dynamics, approximated semiclassically with some
short PO’s, provides sufficient information for estimating
(I). Within this approach it is clear that the least unstable
orbits, namely, those with the smallest product of LE and
orbit period, have the largest influence on eigenfunction
localization. Classical trajectories can cycle in their vi-
cinity for a relatively long time and increase the RP
beyond the ergodic average. For the graphs studied in
this Letter, some PO’s p and their LE A,, are listed in
Table L. The shortest PO’s have period 2 and bounce back
and forth between two vertices. For large graphs v — oo
these are by far the least unstable ones, as their LE
approaches 0 while all others become increasingly unsta-
ble A, ~ Inv. Indeed the period 2 orbits totally dominate
the classical and quantum RP at short times [see Fig. 1(d)].
Including the contribution of these orbits only, Kaplan
obtained a mean IPN which is by a factor ~v larger than
the RMT expectation, in agreement with numerics [5].
Moreover, following the same line of argumentation as in
[2] we get that the bulk of the IPN distribution scales as

P(I/I) =(D)P(D), 2)
indicating that the whole bulk of P(I) is effectively
determined by the least unstable orbits [Fig. 1(c)].

With all this evidence for their prominent role in wave
function localization, one clearly expects to see strong
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scarring on the period 2 orbits [17]. Such states would
essentially be concentrated on two directed bonds and
give rise to J ~ 1/2. However, in this region P(J) is
negligible. The shortest and least unstable orbits of our
system produce no visible scars. Note that the same ap-
plies also to the value J = 1/4 expected from the
V-shaped orbits of Table I In fact, (J) has an appre-
ciable value only for J < 1/6 [Fig. 1(b)]. The position of
this cutoff precisely coincides with the IPN expected for
states which are scarred by triangular orbits. They occupy
six directed bonds since, due to time-reversal symmetry,
scarring on a PO and its reverse must coincide. Indeed a
closer inspection shows that the vast majority of states at
J = 1/6 look like the example shown in Fig. 1(a) (right).
Of course the step at J = 1/6, which is present for any
graph size V, is incompatible with the scaling of P(])
mentioned above and indeed this relation breaks down in
the tails at the expected points [inset of Fig. 1(c)]. We
conclude that visible scars on short unstable orbits can
strongly modify the tails of the IPN distribution even
beyond the known predictions for the influence of short
PO’s on wave function localization.

In the rest of the Letter we formulate a theory which
explains the above observations. To this end we must be
more explicit concerning the dynamics on the graph. We
consider particles with fixed wave number k, propagating
on the bonds and scattering at the vertices. During the
free propagation on a directed bond the wave function
accumulates a phase kL;;, where L;; = Lj; denotes the
length of the corresponding bond. At the vertices current
conservation and continuity of the wave function are
required. These boundary conditions can be translated
into vertex scattering matrices, which describe a unitary
transformation from v; incoming to v; outgoing waves at
each vertex. Without loss of generality we restrict the
presentation to the simplest case of Neumann boundary
conditions [14], where the scattering matrix of vertex i is

(0 — —
O-j,j’ = 2/Ui 6,11 (3)
TABLE L The topology of the shortest PO’s of a fully

connected graph with valency v are shown with the corre-
sponding amplitude, Lyapunov exponent, and IPN.

) p A, A, (v — o) I,
2 — /v —1)? 4/v 1/2
3 A @2/vy? 2Inv 1/6
4 v 2/v)*@2/v — 1)? Inv 1/4
|8 2/v) 2Inv 1/8
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We can now combine the free propagation and the vertex
scattering into a 2B X 2B operator, the bond-scattering
matrix S [14], which acts on the amplitudes a, associated
with the directed bonds. The matrix element

= 5"”(2/1}] - 5in)eikLij (4)

N m—n,i—j

describes a transition from the directed bond d = [i — j]
to d' = [m — n]. We interpret S as a quantum time-evo-
lution operator on the graph. (), is the complex proba-
bility amplitude to be after t = 0, 1, ... time steps on the
directed bond d’ if the initial state was on d. In particular,
[(8)4]? is the quantum RP shown in Fig. 1(b). (8'),; =
> ,A,e*tr is expanded as a sum over all PO’s of period
starting at d. Here L, is the total length of orbit p.
Assuming for 31mpl101ty v; = v throughout the graph,
we express the amphtude A by the number r, of reflec-
tions along p, A (2/v)’ w2/v— 1) (cf Table I).
The classical RP is obtained by summing, instead of
the amplitudes, the probabilities M, = |Ap|2. As M, <
1, the probability to follow the PO decreases exponen-
tially with time and the orbit is unstable. Hence one
defines the Lyapunov exponent of a PO p on a graph by

A, =1, InM,, (5)

Let us now come back to the problem of scarring and
investigate the conditions under which we can construct
perfect scars on the graph, i.e., eigenstates S|a) = e*|a)
which have the property that they have nonzero ampli-
tude only on a PO p and vanish on all other bonds.
Consider an arbitrary vertex j on p and let D; *) be the
set of directed bonds which are leavmg/approachmg jand
belong to p. Similarly let D ) be the set of bonds not
belonging to p. By constructlon the amplitude of |a) on
these latter bonds vanishes; i.e., all waves arriving on the
bonds D'~ ip ) and transmitted across the vertex to a bond in
D( ) cancel each other

0= Zde/ad/ = — Z elde/ad!

d'ED( )

(de D). (6)

This equation has an important consequence: a perfect
scar cannot live on a single bond attached to j because
there would be no way to cancel the transmitted wave. An
exception is vertices with valency v; = 1, for which D(
is empty. Formally a necessary cona’mon Jfor scarrzng
orbits p is

Vjp =2 - (Sv/-,l (V JE P), )
where v; , denotes the number of bonds attached to j and
belonging to p. Equation (7) excludes, in particular,
perfect scars on the period 2 orbits. Applying the same
reasoning that led to Eq. (6) now to the bonds D (+) and
making use of Eq. (3) we get

ea, = —eideaa de DE:,)), (8)
which relates the amplitude on a directed bond d € p to
the amplitude on the reversed bond d € p. This means
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that the same states are scarred on p and p, as expected

from time-reversal symmetry. Substituting d = d we get

e*ay; = —e*laa, which together with Eq. (8) implies
(kL; — M)mod = 0 Ydep 9)

with arbitrary A [18]. Equation (9) is a necessary and
sufficient condition for the energies of perfect scars. It is
reminiscent of a simple Bohr-Sommerfeld quantization
condition kL, = 2nm + A, as it applies, e.g., to strong
scars in billiards. However, there is an important differ-
ence: not only does Eq. (9) require quantization of the
total action kL, of the scarred orbit, it also implies action
quantization on all the visited bonds d. This stronger
condition can be met only if the lengths of all bonds on
p are rationally related. As in general the bond lengths
are incommensurate there are no perfect scars for generic
graphs.

Nevertheless, for incommensurate bond lengths Eq. (9)
can be approximated with any given precision and then
visible scars are expected. A natural measure for the
quality of a scarred state |a) is the total probability &,
D pladl to find this state away from the scarring orb1t
(8, = 0 corresponds to a perfect scar). We derive the
probability density of strong visible scars P(5, — 0).
We represent the bond-scattering matrix S as perturbation
of a matrix Sy which has a perfect scar on p, i.e.,

S =eeP5 =~ (1 + isD)S,,. (10)

The deviations from exact quantization for the individual
bonds d € p have been combined into a diagonal matrix
® with ed,; = (kL; — A)modar ford € p, p and ®,; =
0 otherwise. The strength of the perturbation is given by
g, = min, max,e, [(kL, — A)mod|. For a PO covering
N undirected bonds of the graph N bond phases kL ;mod
must approximately coincide. Upon variation of k, they
are independent and uniformly distributed random num-
bers in [— 7, +77]. Therefore the probability density of a
small perturbation is p(e — 0) ~ V=2, From first order
perturbation theory we have

(°>|<I>|a<°>><d|a<°>>
5=2¢?

where Am R Iam)> are elgenphases and eigenvectors of SO,
including the perfect scar |a”). The quantity x = /&2 is
distributed with some probability density p(x) that is
independent on &. Consequently, we have p(8le) =

2p(8/e?). We can now use P(8) = [dep(8le)p(e)
together with p(e — 0) ~ &V ~2 to deduce

PWN(§) = CcsSWN-3/2 (6 —0). (12)

Here C = [dxx~™W~1/25(x) is a constant which depends
on the size and topology of the graph. Note that, accord-
ing to Eq. (11), x is a sum of B — N independent non-
negative terms x = > ¢ |x,|?. Hence, p(x) vanishes at
least as x2~" for x — 0 and as a consequence the above
integral C exists.

2
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FIG. 2. P(I) for star-graphs of various valencies (inset a
star-graph with v = 6). In the upper inset we report the
integrated distribution P;(8) = [ d8'P(8') in a double-loga-
rithmic plot. The dashed line has slope 0.5 which corresponds
to the theoretical prediction Eq. (12).

For fully connected graphs, triangles are the shortest
orbits compatible with Eq. (7) and we have PO(s —
0) = C, i.e., the probability of scarring does not depend
on the required quality of the scar. This is in excellent
agreement with numerical results [Fig. 1(e)] and compat-
ible with the steplike cutoff in () [19]. In a similar way
we can describe the statistics of scars on other orbits. For
example, according to Eq. (7), the square-shaped orbits of
Table I can support scars and we did observe such states.
However, Eq. (12) gives PW(8 — 0) ~ 6'/2; ie., the
probability of strong square scars is much smaller than
for triangles and consequently they leave no distinct trace
in P(7).

In contrast to fully connected graphs, Eq. (7) allows in
star graphs scarring on the V-shaped orbits of Table I,
because the outer vertices have valency 1. Applying
Eq. (12) in this case we get P(8 — 0) ~ 6 /2 i.e., scar-
ring is strongly enhanced. As a consequence P(]) is here
totally dominated by scars, showing a strong maximum at
I =0.25 (Fig. 2). It would be very interesting to relate
this fact to spectral statistics, which for star graphs cor-
responds to pseudointegrable instead of chaotic classical
dynamics [16].
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Apparently this expectation is also supported by other
scar theories which up to now have not been applied to
graphs. For example, Agam and Fishman [4] predicted
the positions of visible scars by a PO sum in which the
orbits are weighed according to their stability.

For A = 0 the scarred states satisfy the secular equation
for graphs [14]. We have checked that our results remain
valid in this special case.

Strictly speaking, & gives only a lower bound for I, J =
1/6 — 8/3, such that the step at J = 1/6 is slightly
smoothed. This is beyond the resolution of Fig. 1(b).
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