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Abstract
In generic Hamiltonian systems with a mixed phase-space, chaotic transport
may be directed and ballistic rather than diffusive. We investigate one particular
model showing this behaviour, namely a spatially periodic billiard chain in
which electrons move under the influence of a perpendicular magnetic field.
We analyse the phase-space structure and derive an explicit expression for the
chaotic transport velocity. Unlike previous studies of directed chaos our model
has a parameter regime in which the dispersion of an ensemble of chaotic
trajectories around its moving centre of mass is essentially diffusive. We
explain how in this limit the deterministic chaos reduces to a biased random
walk in a billiard with a rough surface. The diffusion constant for this simplified
model is calculated analytically.

PACS numbers: 05.45.Ac, 05.60.Cd

1. Introduction

With the term directed chaos we refer to extended chaotic systems in which the time-averaged
velocity of almost all chaotic trajectories approaches for long time a non-zero constant vch �= 0.
In contrast to the well-known deterministic chaotic diffusion, the chaotic transport in such
systems is ballistic and directed, 〈x〉 = vcht . For 1D driven Hamiltonian systems it has been
shown that directed chaos may exist if the periodic driving is such that (i) all generalized time-
reversal symmetries are broken [1] and (ii) the system has a mixed phase space in which regular
and chaotic dynamics coexist [2]. Examples of this type have been investigated in a number of
recent publications [1–4], and closely related phenomena were realized experimentally with
cold atoms in pulsed optical potentials [5, 6].

In the present paper we address directed chaos in a different situation which might be
relevant in the context of solid-state physics. We study quasi-one-dimensional billiard chains
with (i) a transversal magnetic field breaking time-reversal symmetry and (ii) an asymmetric
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Figure 1. In a waveguide with obstacles placed only along one of the walls a transversal magnetic
field leads to the coexistence of regular and chaotic trajectories. Two corresponding examples
are shown with a dashed and a full line, respectively. Note that for the same magnetic field and
particle charge the trajectories can be traversed only with the indicated orientation. The relevant
parameters of the model are a = 1.2b (spatial period), R = 0.5b (radius of obstacles) and r = 2b

(cyclotron radius).

configuration of scatterers which, in combination with the magnetic field, leads to a mixed
phase space. We will show that in these systems the nature of transport is entirely different for
the forward and the backward directions. In one of the two directions transport is due to regular
orbits skipping along a boundary of the billiard chain (waveguide) without back scattering. In
the other direction there is a strong back scattering and the dynamics is chaotic. Consequently
all dynamical properties such as the average transport velocity or the superimposed spreading
of a distribution of particles are different for the two transport directions. It is this special
property which makes the systems we consider interesting and potentially useful for controlling
nanoscale electronic transport.

We can considerably extend a preceding study of directed chaos in magnetic billiards
[7] because the specific geometry which we propose leads to a particularly simple phase-
space structure. This allows for detailed analytical calculations and provides sufficient insight
in order to control the transport properties of our model with a few geometric parameters.
For example, we obtain an explicit expression for the chaotic transport velocity. We can also
understand in some detail the velocity dispersion of the chaotic trajectories. In known examples
for directed chaos [1–4] this dispersion was found to be non-Gaussian, with clear signatures
of Lévy walks. In contrast, we identify a parameter that can be tuned such that the dispersion
becomes essentially diffusive while vch �= 0 remains constant. In other words, there really is
a clear separation of scales between directed transport, 〈x〉 ∼ t , and undirected broadening of
an ensemble, 〈�x〉 ∼ t1/2. This might be a desirable feature in applications. In this regime
of biased diffusion the chaotic dynamics can be approximated by a non-deterministic random
walk in a billiard with a rough boundary, although our original model is deterministic and
has no disorder. Rough billiards are nowadays standard models for electron dynamics on
mesoscopic scales [8, 9]. However, the system which we study here seems to be the first such
model with a mixed regular-random phase space and is thus interesting also in its own right.

In the following two main sections we introduce and analyse our billiard models with
directed chaos. Section 2 is devoted to a periodic billiard chain with transversal magnetic
field in which the dynamics is deterministic, while in section 3 we study a billiard with a
rough surface and non-deterministic dynamics. The connection between these two models is
explained in section 2.3. Section 4 closes our paper with a summary and some concluding
remarks.

2. Periodic chain of magnetic Sinai billiards

In figure 1 we show an example for an asymmetric magnetic billiard which illustrates
qualitatively the effect we investigate. The system consists of a waveguide in which one wall
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Figure 2. Phase-space portrait of the system of figure 1. y and ϕ are shown for x = 0 mod a and
(a) cos ϕ > 0, (b) cos ϕ < 0. The data represent one chaotic and four skipping trajectories.

is perfectly straight, y1(x) ≡ b. The opposite wall is distorted periodically, y = y2(x) � 0,
with

ymax = maxxy2(x) < b. (1)

Specifically in our case this is achieved by a chain of semicircular obstacles with radius
R = ymax, but other geometries may lead to similar results1.

Energy is conserved, and we will consider the dynamics on the energy shell corresponding
to the velocity v0. For numerical calculations we use dimensionless units in which v0 = b = 1,
i.e., we measure velocity in units of v0, lengths in units of b and time in units of b/v0. As
a consequence, the geometric length of a trajectory is equal to the elapsed time. Due to a
perpendicular magnetic field the trajectories of electrons in the waveguide consist of circular
arcs with cyclotron radius r = mv0/eB. In the following we will use the cyclotron radius to
parametrize the magnetic field.

The magnetic field leads to a special set of trajectories skipping along the clean wall of
the channel (dashed line in figure 1). It is a matter of simple geometry to describe the transport
due to these regular trajectories which by our convention of the magnetic field is directed
to the left (negative transport velocity). In contrast, trajectories colliding with the distorted
wall of the waveguide can be chaotic such as the example shown with a full line in figure 1.
The figure suggests that such trajectories are transporting to the right that is opposite to the
skipping ones. We will see below that this is indeed the case. This system shows directed
chaos, and the transport due to the chaotic trajectories compensates for the regular skipping
orbits such that no net transport results if one averages over all possible initial conditions.

2.1. Phase-space structure

A phase-space point on the energy shell is completely described by the position (x, y) in the
waveguide and the angle ϕ between the velocity vector and the x-axis (figure 1). In these
coordinates, the invariant measure is

dµ = dx dy dϕ. (2)

In order to obtain a general impression of the dynamical scenarios supported by our model we
show a Poincaré section (figure 2) obtained by marking y and ϕ whenever a trajectory crosses

1 For example, we found similar behaviour when rectangular unit cells are extended by attaching on one side a
semicircle instead of cutting it out [10].
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the boundary of a unit cell, x = 0 mod a, i.e., whenever x is half way between two obstacles.
The two panels correspond to crossings with positive and negative transport velocity

vx = v0 cos ϕ. (3)

Note that the invariant measure of the resulting Poincaré map is

dµ⊥ = dy dϕ cos ϕ. (4)

In the Poincaré section we observe a big chaotic component which contributes to both
directions. In fact the randomly scattered points in figures 2(a) and (b) are the trace of a
single chaotic trajectory, namely the one shown in figure 1. In addition we see in figure 2(b)
also the traces of a number of skipping orbits. These trajectories have a second constant of
the motion besides the energy, namely the y-component of the current arc’s centre

yc(y, ϕ) = y − r cos ϕ. (5)

Therefore the skipping orbits constitute a regular (integrable) component of phase space which
comprises all phase-space points satisfying

cos ϕ � y − R

r
− 1, (6)

that is all arcs whose lowest point is still above the top of the obstacles, yc(y, ϕ) − r � ymax.
It is clear that trajectories with such initial conditions can never be scattered. One may argue
that there can exist also skipping orbits violating the condition in equation (6). Say the lowest
point of the current arc is below ymax but falls into the gap between two obstacles. However,
if one continues the trajectory it will finally hit one of the scatterers, at least if the longitudinal
extension �x of the arcs is not rationally related to the spatial period a. Thus, exceptional
skipping orbits within the chaotic component may exist but must have measure zero in phase
space.

Are all orbits either chaotic or skipping? There is no reason to expect this. Typically,
the boundary between a regular and a chaotic component in phase space is fractal, with
hierarchies of smaller and smaller stable islands embedded into the chaotic sea. Also deep
within the chaotic sea stable periodic orbits with small islands surrounding them can exist.
Such islands are clearly visible for relatively small cyclotron radius, e.g. r = 1. However,
for the parameters used in figures 1 and 2 we were unable to detect stable islands even after
increasing the resolution of the phase-space portrait considerably. For growing cyclotron
radius it must be expected that stable islands are less and less important, as for zero magnetic
field (r = ∞) the system reduces to the Sinai billiard (Lorentz gas) which is known to be fully
hyperbolic [11]. Hence, we will neglect the influence of additional stable islands and assume
that for sufficiently large r the phase space of our model has the simple structure which is
visible in figure 2. All analytical calculations below will be based on this assumption.

2.2. Average chaotic transport velocity

We will now calculate the asymptotic chaotic transport velocity. For this purpose it is useful
to restrict the dynamics to a unit cell by taking x modulo a. After this transformation the
phase-space volume of the system is finite but the transport velocity vx(t) = v0 cos ϕ(t) is
unchanged. Assuming ergodicity within the chaotic component of the unit cell, the long-
time average over the transport velocity converges for almost all chaotic trajectories to the
corresponding phase-space average,

vch = lim
t→∞ t−1

∫ t

0
dt ′ vx(t

′)

= v0〈cos ϕ〉ch. (7)
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Figure 3. For the parameters of figure 1 the time-averaged velocity of five different chaotic
trajectories is shown as a function of time. For all trajectories the average velocity approaches the
value predicted by equation (17) which is indicated by the horizontal line.

This is illustrated in figure 3. As is common in systems with a mixed phase space, the
assumption of ergodicity within the chaotic component cannot be justified analytically.
Numerical evidence in favour of it has been gathered for our model by checking that individual
chaotic trajectories cover the available phase-space region uniformly.

In general there is no reason to expect vch = 0 in equation (7). However, an average over
cos ϕ is obviously zero, if for any point (x, y, ϕ) in the domain of integration also the point
(x, y, ϕ + π) with opposite velocity direction contributes. For example this is the case if the
integration extends over the entire phase space of the unit cell,

〈cos ϕ〉uc = 0. (8)

Hence, in a completely chaotic billiard we would have vch = 0, i.e., there is no directed chaos.
Similarly, in any system with a single chaotic component and time-reversal symmetry there
can be no directed chaos even if stable islands are present. On the other hand directed chaos
can exist in fully chaotic systems with time-reversal symmetry if the phase space contains two
invariant chaotic components (see [12] for an example).

In our case we can decompose the full phase space into the chaotic component and the
skipping orbits. Thus we have

�uc〈cos ϕ〉uc = �reg〈cos ϕ〉reg + �ch〈cos ϕ〉ch (9)

and

�uc = �reg + �ch, (10)

where �i = ∫
i
dµ denotes the phase-space volume of the set i. Substitution into equation (7)

yields

vch = −v0
�reg〈cos ϕ〉reg

�uc − �reg
(11)

which is the analogue to the sum rule derived in [2] for the chaotic transport velocity in driven
1D systems. However, in the present case we are able to calculate vch explicitly. First we note
that the phase-space volume of the unit cell is

�uc = 2π
(
ab − π

2
R2

)
. (12)

Next we introduce the characteristic function of the regular component which, according to
equation (6), is given by

χreg(x, y, ϕ) = �

(
y − R − r

r
− cos ϕ

)
. (13)
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Figure 4. For the model of figure 1 the dispersion of chaotic transport velocities is analysed.
(a) N = 106 trajectories have been iterated up to t = 103. The resulting distribution of average
velocities is displayed as a histogram and compared to a Gaussian with the same mean and variance
(dotted line). The prediction of equation (17) for the average velocity is indicated by a vertical
line. The numerical mean value of the distribution differs from that by 1.5×10−5. (b) shows some
higher moments 〈(v − vch)

n〉 of the distribution as a function of time. The straight lines indicate
the corresponding moments of a diffusively spreading Gaussian with D = 1.2.

The volume of the regular component is then

�reg =
∫

dµχreg(x, y, ϕ)

= a

∫ 2π

0
dϕ

∫ b

0
dy �

(
y − R − r

r
− cos ϕ

)

= a

∫ π+θ

π−θ

dϕ(b − [R + r + r cos ϕ])

= 2ar(sin θ − θ cos θ), (14)

where

θ = arccos

(
1 − b − R

r

)
(15)

denotes the maximum deviation of the limiting skipping orbit from the horizontal. Similarly
we have

�reg〈cos ϕ〉reg =
∫

dµχreg(x, y, ϕ) cos ϕ

= a

∫ π+θ

π−θ

dϕ(b − [R + r + r cos ϕ]) cos ϕ

= −ar(θ − sin θ cos θ). (16)

Substitution of these expressions into equation (11) finally yields

vch = v0

2

θ − sin θ cos θ

(π/ar)
(
ab − π

2 R2
) − (sin θ − θ cos θ)

(17)

for the chaotic transport velocity. This result is confirmed numerically in figures 3 and 4.
For small magnetic field, when our assumption of a two-component phase space is justified

best, we can approximate equation (17) by the leading order in the cyclotron radius. We find

θ ≈
√

2(b − R)

r
(18)
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and

vch ≈ v0
4a

3�uc

√
2(b − R)3

r
. (19)

This shows explicitly that the chaotic transport vanishes in the absence of a magnetic field
(r → ∞).

2.3. Dispersion of chaotic trajectories

With the above results we can precisely predict the average transport velocity of many chaotic
trajectories at a given moment in time, or the long-time average over a typical trajectory.
However, we have no precise information about the dispersion of an ensemble, or the rate of
convergence of the transport velocity to its asymptotic value. In systems with sufficiently fast
decay of correlations, the dispersion of chaotic trajectories is diffusive,

〈[x(t) − vcht]
2〉 = Dt. (20)

In this case the distribution of time-averaged velocities

vt = x(t) − x(0)

t
(21)

is for long times a Gaussian with variance D/t ,

P(vt ) =
√

t

2πD
exp(−[t/2D][vt − vch]2). (22)

In figure 4 we compare this hypothesis to the chaotic dispersion for the parameters of figure 1.
Clear deviations from diffusive behaviour are observed in the tails of the distribution and for
its higher moments. After iterating N = 106 trajectories to t = 103 the average chaotic
velocity agrees very well with the value predicted by equation (17). However, the distribution
of time-averaged velocities is asymmetric around vch and, compared to a Gaussian, large
deviations from the mean value are enhanced. For the considered time interval the variance
of the distribution (+) is fitted well by the diffusive prediction D/t . However, with increasing
n the higher moments 〈(v − vch)

n〉 of the velocity distribution deviate more and more from
the corresponding time-dependent Gaussian (×, ∗ versus full lines). There is no surprise as
in systems with a mixed phase-space anomalous diffusion is typical. Indeed, in previous
studies of directed chaos in such systems the observed velocity distributions were always non-
Gaussian [1–4]. They displayed traces of Lévy walks and anomalous diffusion which were
even stronger than those in figure 4, and it was not possible to adjust the model parameters
such that directed transport coexists with normal diffusion.

Therefore it is quite remarkable that in our model a slightly modified geometry leads to a
velocity distribution which numerically could not be distinguished from a Gaussian. In figure 5
the analysis of figure 4 is repeated for a system in which (i) the semicircular obstacles are
much smaller than in figure 1 and (ii) neighbouring scatterers are tangent rather than separated
by a gap (see figure 7(a)).

This latter modification removes marginally stable periodic orbits which hit the lower
wall within the straight sections of the boundary only (figure 6). Up to a certain limit it is
possible to translate such orbits along the channel without changing their shape. Nevertheless
they form a set of measure zero in phase space since the angle of the trajectory cannot be
varied without destroying the orbit (dotted line in figure 6). It is known that marginally stable
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Figure 5. Same as figure 4 for R = 0.01b and a = 2R (neighbouring semicircles are touching).
The fitted diffusion constant is D = 1.2

Figure 6. The full lines show two marginally stable periodic orbits (one of them is periodic up
to translation by one unit-cell length). The dotted line is a non-periodic chaotic trajectory which
remains in the vicinity of a marginally stable orbit for a very long period of time.

trajectories are a source of non-exponential decay of correlations. They lead to anomalous
diffusion even in completely chaotic systems like the Sinai or the stadium billiard [13–15].
In our system generic chaotic trajectories can remain in their vicinity for a long time and
during these episodes keep the transport velocity substantially above or below the average
(e.g. v ≈ 0.5 for the dotted line in figure 6 while vch = 0.12). Therefore it is quite natural
that the chaotic dispersion shows much less anomalous diffusion when the specific geometry
prevents the existence of marginally stable trajectories.

In contrast, it is not immediately clear why reducing the radius of the scatterers should
further suppress anomalous diffusion in our model. In order to find an intuitive explanation for
this numerical fact we consider now a different Poincaré section defined by the intersections
of a trajectory with the line y = R. Note that regular skipping orbits do not at all intersect
this line. In analogy to equation (4) the invariant measure restricted to the surface of section
is now

dµ‖ = dx dϕ sin ϕ = dx dc (23)

with c = cos ϕ. Hence, a typical chaotic trajectory is represented in this Poincaré section by
points (ξn, cn) which uniformly cover the area [0, 1] × [−1, 1]. ξn = (xn/a) mod 1 denotes
here the position of the intersection relative to the unit cell. Following a transition across
y = R from below, (ξn−1, cn−1), there will always be an intersection from above which is
denoted by (ξ ′

n, c
′
n). Geometry requires c′

n = cn−1.
For small obstacle radius transport is mainly due to the long segments of the trajectory

above y = R (figure 7(a)). Each segment is either a single circular arc or a combination of
two arcs which are identical up to a reflection. Segment n is entirely characterized by the
value of cn. Therefore the statistics of the cn determine the transport properties. In particular,
the velocity dispersion will be diffusive if correlations between consecutive angles decay
sufficiently fast. This argument will be made more explicit in section 3 below. Figure 7(c)
shows that for sufficiently small obstacle radius 〈c0cn〉 indeed decays very fast as a function
of n (exponentially fast to a good approximation). This observation can be understood as
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Figure 7. (a) A piece of a chaotic trajectory is shown for R = 0.1b and a = 2R. (b) One particular
scattering of this trajectory from the lower billiard boundary is magnified. Note that on this scale
the curvature of the trajectory due to the magnetic field is hardly visible. (c) The normalized
correlation between consecutive intersection angles of the segments with the line y = R is shown
with stars for the model of (a), with empty squares for R = 0.01b and with black dots for the same
R but randomized ξn (see the text). The straight line shows the fitted exponential exp(−1.65n).

follows: as R → 0, a segment (ξn−1, cn−1) → (ξ ′
n, c

′
n) traverses more and more unit cells

between its end points. As a consequence, one expects an extremely rapid variation of ξ ′
n as

a function of cn−1. This suggests to replace ξ ′
n by a random variable. Figure 7(c) confirms

that this approximation is very good for the parameters of figure 7(a) or even smaller obstacle
radius R. Note that the argument leading to this randomization does not depend on the value
of the cyclotron radius r. In particular, it remains valid also in the absence of a magnetic field,
r = ∞.

Next we consider the dynamics in the vicinity of the lower boundary, i.e., for y < R. For
small obstacle radius it is practically identical to that for r = ∞ since the ratio 2R/r between
the size of the unit cell and the (constant) radius of curvature of the trajectory vanishes as
R → 0 (figure 7(b)). Hence the resulting mapping (ξn, cn) → (ξ ′

n, c
′
n) may be approximated

by a Sinai billiard without magnetic field. The latter is known to be hyperbolic [11] and shows
exponential mixing if no marginally stable orbits are present. As the correlations should not
be enhanced by the additional randomization of ξ we finally understand why 〈c0cn〉 decays
exponentially for small obstacle radius R  r , leading to a diffusive velocity dispersion.

3. A waveguide with one rough boundary

The results of the previous section suggest that for small obstacle radius R the detailed dynamics
inside the lower boundary layer of the waveguide is irrelevant. This holds at least as long as
the dynamics therein is chaotic. In this case the essential physical properties of our model are
not affected if we replace the boundary layer by an idealized rough surface and describe the
scattering at the lower wall probabilistically. In the present section we follow this approach
and obtain in this way a better analytical understanding. For the sake of simplicity we will
continue to refer to trajectories which hit the lower wall as chaotic although the dynamics
is not deterministic anymore. This is justified since we have just explained how random
scattering may arise from a deterministic chaotic system in a certain limit. Nevertheless there
are also other mechanisms such as thermal or quantum fluctuations which may lead to the
same probabilistic model.

In order to define our simplified model we must prescribe the probability for a trajectory
to leave the lower boundary at an angle 0 � φ � π . Consistency with the invariant measure
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dµ‖, equation (23), requires

P(φ) = sin φ

2
(0 � φ � π). (24)

In terms of c = cos φ this amounts to

P(c) = 1
2 (−1 � c � +1) (25)

for the probability density averaged over all chaotic trajectories. We account for possible
correlations between the segments of a trajectory by introducing a probability α for a specular
reflection at the lower boundary. The probability density for cn is then

P(cn) = αδ(cn − cn−1) +
1 − α

2
. (26)

While for α = 0 there are no correlations between consecutive values of cn

〈c0cn〉 = δn,0

∫ +1

−1
dc P (c)c2

= δn,0

3
(α = 0), (27)

the possibility of specular reflections leads to exponentially decaying correlations

〈c0cn〉 = αn

3
(α �= 0). (28)

For each segment of a chaotic trajectory we can express the horizontal distance between its
endpoints as

�x(φ) = 2r(sin φ − sin φ′). (29)

On the other hand the total length of a segment is

�l(φ) = 2r(φ − φ′). (30)

Here φ and φ′ denote the angles of intersection with the lower and the upper wall of the
channel, respectively (see figure 8(a)). In terms of the former, the latter is given by

φ′ =




arccos

(
cos φ +

b

r

) (
cos φ � 1 − b

r

)

0

(
cos φ > 1 − b

r

)
,

(31)

where the second line extends the definition of φ′ to those segments of a trajectory which do
not reach the upper wall.

With the help of the angle φ we can give an alternative parameterization of the chaotic
component of phase space. Instead of (x, y, ϕ) we can refer to one of its points by the
coordinates (x, φ, l). As mentioned above, φ is the inclination angle of the segment at its
initial point, and 0 � l � �l(φ) is the path length measured from there. Formally, the
transformation between (φ, l) and (ϕ, y) is given by

ϕ(φ, l) =




φ − l

r
l � �l(φ)

2

−ϕ(φ,�l − l) l >
�l(φ)

2

(32)

y(φ, l) = r cos ϕ(φ, l) − r cos φ, (33)

where the second line of equation (32) expresses the reflection symmetry of the trajectory
segments. In terms of φ and l we can express arbitrary averages over the chaotic phase-space
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Figure 8. (a) Typical electron trajectories (dashed line: regular, full line: chaotic) for a waveguide
with a perpendicular magnetic field (r = 5b/3). The lower wall is perfectly rough (α = 0)

such that the angles before and after a reflection are completely uncorrelated. (b) and (c) show a
phase-space portrait of this system for r = b.

component as

〈· · ·〉ch =
∫ π

0 dφ P (φ)
∫ �l(φ)

0 dl (· · ·)∫ π

0 dφ P (φ)
∫ �l(φ)

0 dl
.

= 〈�l〉−1
φ

∫ π

0
dφ P (φ)

∫ �l(φ)

0
dl (· · ·), (34)

where 〈· · ·〉φ is the average over the probability density P(φ). Equation (34) will be applied
in the following sections.

It is useful to note that equations (29) and (30) allow us to understand the chaotic transport
as random walk along the x-axis without any reference to the transversal motion. The discrete
steps of this random walk are �x(φ) and the corresponding time increments are �l(φ)/v0.
Step n is chosen according to the probability density given in equation (26).

3.1. Average chaotic transport velocity

We will now give an alternative derivation for the chaotic transport velocity in the case R = 0.
We can apply equation (34) to equation (7) and simplify the result using the identity∫ �l(φ)

0
dl cos ϕ(φ, l) = �x(φ) (35)

which follows from equation (32) and should also be obvious from the geometrical meaning
of �x and �l. In this way we obtain

vch = v0〈�l〉−1
φ

∫ π

0
dφ P (φ)

∫ �l(φ)

0
dl cos ϕ

= v0〈�l〉−1
φ

∫ π

0
dφ P (φ)�x(φ)

= v0
〈�x〉φ
〈�l〉φ . (36)
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This representation is very intuitive from the random-walk point of view: a long trajectory
consists of N → ∞ steps distributed according to P(φ). Therefore the distance between
the end points of the trajectory is �X = N〈�x〉φ while the total time increment is
�T = N〈�l〉φ/v0. The average longitudinal component of the velocity is then �X/�T

which is equivalent to equation (36). Explicit averaging over φ yields

〈�x〉φ = r

∫ π

0
dφ sin φ(sin φ − sin φ′)

= r

∫ +1

−1
dc

√
1 − c2 − r

∫ 1−b/r

−1
dc

√
1 − [c + b/r]2)

= π

2
r − r

4

[
π + 2

(
1 − b

r

)√
b

r

(
2 − b

r

)
− 2 arcsin

(
b

r
− 1

)]

= r

2
(θ − sin θ cos θ). (37)

In agreement with equation (15) we have set cos θ = 1 − b/r in order to obtain the last line.
For the average length of a segment we have

〈�l〉φ = r

∫ π

0
dφ sin φ(φ − φ′)

= r

∫ +1

−1
dc arccos(c) − r

∫ 1−b/r

−1
dc arccos(c + b/r)

= πr − r

2

[(
1 − b

r

) (
π − 2 arcsin

(
b

r
− 1

))
+ 2

√
b

r

(
2 − b

r

)]

= r

[
π

b

r
− (sin θ − θ cos θ)

]
. (38)

Combining equations (36)–(38) we find the expected result, namely equation (17) with R = 0
(and arbitrary a)

vch = v0

2

θ − sin θ cos θ

(πb/r) − (sin θ − θ cos θ)
(39)

≈ 2v0

3π

√
2b

r
(r → ∞). (40)

Figure 9 shows equation (39) as a function of the cyclotron radius. We observe that for small
r the properties of the system change qualitatively. In particular the chaotic transport velocity
is constant, vch = v0/2 for r � b/2. In this regime a third phase-space component of free
cyclotron orbits appears in addition to regular skipping and chaotic trajectories. Hence, the
phase-space sum rule for vch must be modified and equation (17) is not valid. In contrast,
equation (36) still applies, but now we have φ′ = 0 for all φ since no chaotic trajectory reaches
the upper wall. Therefore we have

〈�x〉φ = 2r〈sin φ〉φ
= 2r

1

2

∫ +1

−1
d cos φ sin φ

= π

2
r, (41)
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Figure 9. Dependence of the chaotic transport velocity and the diffusion constant on the cyclotron
radius r for random scattering from the lower wall (α = 0).

〈�l〉φ = 2r〈φ〉φ
= πr (42)

and finally

vch = v0

2
. (43)

3.2. Diffusion constant

Using the method of the previous subsection we can also calculate the diffusion constant D
of our simplified model. The starting point is the well-known Green–Kubo relation [16, 17]
expressing D as integral over the velocity autocorrelation function,

D =
∫ +∞

−∞
dt〈ṽx(t)ṽx(0)〉. (44)

Here ṽx(t) = v0 cos ϕ(t)−vch denotes the fluctuation of the transport velocity around its mean
value and the average 〈· · ·〉 is taken over all possible trajectories. For the moment we will
assume α = 0, i.e., no correlations between different segments of a trajectory. In this case it
suffices to restrict the integral over t to the segment containing the phase-space point (φ0, l0)

at t = 0 that is to the interval −l0 � v0t � �l(φ0) − l0. We use equation (34) to average over
(φ0, l0), make the substitution l = l0 + v0t and apply equation (35). In this way we find

Dα=0 = 1

〈�l〉φ

∫ π

0
dφ0 P(φ0)

∫ �l(φ0)

0
dl0 dl v−1

0 (v0 cos ϕ(φ0, l) − vch)(v0 cos(φ0, l0) − vch)

(45)

= v0

〈�l〉φ

∫ π

0
dφ0 P(φ0)

(
�x(φ0) − vch

v0
�l(φ0)

)2

= v0
〈[�x − (vch/v0)�l]2〉φ

〈�l〉φ . (46)

This result reduces the calculation of the diffusion constant to a simple 1D quadrature which
is numerically straightforward. An explicit result is available for strong magnetic field

Dα=0 = 2v0r

3π

(
r � 1

2

)
, (47)
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Figure 10. Some higher moments of the distribution of N = 104 time-averaged chaotic transport
velocities in the magnetic billiard with rough lower wall and r = 2b. The probability of specular
reflection is (a) α = 0 and (b) α = 3/4. Straight lines indicate diffusive spreading with the
diffusion constant given by equations (46) and (48). The latter correctly predicts that Dch is greater
by a factor of 7 in (b).

which reproduces the initially linear dependence of the diffusion constant on the cyclotron
radius (figure 9).

If α �= 0, several consecutive segments of a trajectory can be identical. Accordingly, the
section of the trajectory which is correlated with the point (φ0, l0) is longer and the integration
over l in equation (45) extends over the range −l0 − µ�l(φ0) � l � �l(φ0) − l0 + ν�l(φ0),
where µ, ν � 0 count the identical segments before and after the current one. Hence the
integral increases by a factor µ + ν + 1. For ν identical segments following the current one
we need ν specular reflections from the lower wall and finally one random reflection. The
probability for this is αν(1 −α). Similarly, the probability for µ identical segments preceding
the current one is αµ(1 − α). Averaging with these probabilities over µ, ν yields

Dα =
∞∑

µ,ν=0

αµ+ν(1 − α)2(µ + ν + 1)D0

= 1 + α

1 − α
D0. (48)

In figure 10 we verify these results on the chaotic diffusion constant numerically.

4. Summary and discussion

In this paper we have introduced and studied a particular billiard model which shows directed
chaos. The most appealing feature of this model is the fact that the phase space has, to a
good approximation, a very simple structure which can be understood both intuitively and
analytically. It consists of two invariant manifolds, one chaotic and one regular. The latter
is formed by trajectories skipping periodically along one perfectly straight wall of a channel.
The other wall has semicircular obstacles or is disordered or rough. This leads to strong
back scattering and thus to a chaotic or random phase-space component. Both the particular
phase-space structure and the fact that time-reversal symmetry is broken, are dependent on
the presence of a transversal magnetic field acting on charged particles such as electrons. The
magnetic field should have a suitable intermediate strength. For a very small magnetic field
the phase-space volume of the regular skipping trajectories goes to zero and, accordingly, the
chaotic transport vanishes. For a strong magnetic field the phase-space structure changes as
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more and more regular regions appear. Finally, for a very strong magnetic field, free cyclotron
orbits cover most of the phase space. In this regime the chaotic trajectories are skipping along
the lower wall and vch approaches a non-zero constant, but at the same time the chaotic fraction
of the phase space goes to zero.

We have stressed in the introduction the analogies between directed chaos in driven
systems and in magnetic billiards. However, there is also an important difference. It has been
shown that driven Hamiltonian systems with directed chaos can generate directed transport in
ensembles of particles which initially have a thermal distribution in phase space [1–6]. They do
so without an external bias force and under the influence of a potential which is periodic both in
space and in time. This is very similar to the concept of stochastic ratchets (Brownian motors)
[18–21]. Hence the term Hamiltonian ratchet is appropriate for the models investigated in [1–5]
and also for the atom-optics setup studied experimentally in [6]. However, magnetic billiards
with directed chaos are not Hamiltonian ratchets and cannot generate directed transport from
thermal ensembles. The reason is the conservation of energy. We have seen that the total
transport from all regular and chaotic phase-space components of an energy shell must vanish.
Therefore directed transport in magnetic billiards requires control over the initial conditions
beyond prescribing a certain distribution of energy values. For example, electrons could be
placed selectively into the chaotic phase-space component of our billiard chain if they enter
the system from a lead which is attached to the lower wall of the waveguide.

An interesting extension of the present work would be the inclusion of quantum
effects. They definitely play an important role when applications to electronic transport
in semiconductor nanostructures are the goal. For a given geometry and a given time there is
always a semiclassical regime in which the effective value of Planck’s constant is sufficiently
small such that the classical results obtained above remain valid. On the other hand, for a
given finite h̄ there should be interesting deviations from our predictions for large times when
tunnelling between the regular and the chaotic regions of phase space may become important
and when the presence or absence of disorder in the system is crucial.
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