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Shot Noise in Chaotic Cavities from Action Correlations
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Max-Planck-Institut für Strömungsforschung und Institut für Nichtlineare Dynamik der Universität Göttingen,

Bunsenstraße 10, D-37073 Göttingen, Germany
(Received 11 April 2003; published 25 September 2003)
134101-1
We consider universal shot noise in ballistic chaotic cavities from a semiclassical point of view and
show that it is due to action correlations within certain groups of classical trajectories. Using quantum
graphs as a model system, we sum these trajectories analytically and find agreement with random-
matrix theory. Unlike all action correlations which have been considered before, the correlations
relevant for shot noise involve four trajectories and do not depend on the presence of any symmetry.
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FIG. 1. (a) A chaotic cavity with two attached waveguides
and a classical trajectory contributing to conductance and shot
noise. (b) The quantum graph used to model this situation. The
tions which are responsible for shot noise and explain how
due to these correlations the universal result of RMT
[5,14–21] can be recovered from a single system without

transversal modes of the waveguides correspond to the infinite
leads attached to the graph (bold lines), while the internal
system is represented by many finite bonds.
One of the most prominent methods to describe spec-
tral and transport properties of ballistic quantum systems
with classically chaotic dynamics relies on the semiclas-
sical representation of the Green’s function in terms of
classical trajectories. For closed systems, this leads to
Gutzwiller’s trace formula [1], which expresses the oscil-
lating density of states as a sum over periodic orbits. For
open systems, the semiclassical theory of chaotic scatter-
ing [2,3] and, in particular, its applications to electronic
transport through mesoscopic devices [4] are based on
this approach. The power of this method as compared,
e.g., to random-matrix theory (RMT) [5,6] is its potential
to account for system-specific details. Its main drawback
lies in the difficulty to handle the resulting sums over
huge sets of classical trajectories. Until recently the only
method to deal with this problem was Berry’s diagonal
approximation [7], which neglects any nontrivial corre-
lations between the trajectories. As a consequence, many
interesting phenomena such as weak localization, univer-
sality in spectral statistics and in conductance fluctua-
tions, or the suppression of shot noise cannot be described
properly. Although the role of correlations between the
actions of classical orbits has been appreciated for a long
time [8–10], there is only one special case where they can
be accounted for explicitly: Sieber and Richter recently
calculated the leading order weak localization correc-
tions from correlations between specific orbit pairs [11].
This result stimulated further intense research [12,13]
and it is clearly a very promising approach. However, as
mentioned above, weak localization is just one of a vari-
ety of other phenomena for which action correlations are
relevant as well, but cannot be accounted for by the orbit
pairs considered in [11–13].

In this Letter, we address shot noise in ballistic meso-
scopic conductors, which is an important source of ex-
perimentally accessible information about the dynamics
in such systems [14–17]. We identify the action correla-
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ensemble average. The relevant correlations are funda-
mentally different from all those considered previously
[8–13] because they involve four instead of just two
classical trajectories. Moreover, they do not depend on
the presence of symmetries. We emphasize that action
correlations are no small correction. They are needed to
understand shot noise to leading order.

We will perform all explicit calculations in a specific
model system, the quantum graph of Fig. 1(b). Quantum
graphs (networks) have a long record as models for elec-
tronic transport (see [22] and references therein). Since
the pioneering work of Kottos and Smilansky, they are
also established in quantum chaos [12,23–25]. They are
particularly suitable for our purpose as the representation
in terms of classical trajectories is exact and the analogue
of action correlations amounts to exact degeneracies.
Previous studies showed that despite these analytical
simplifications the mechanism and the role of correlations
between classical trajectories are equivalent to other sys-
tems such as billiards [12].

Consider a chaotic cavity with two attached wave-
guides supporting N1, N2 transversal modes, respectively
[Fig. 1(a)]. For small bias voltage and temperature, neg-
ligible electron interactions, and fully coherent dynam-
ics, all information about electron transport through
this system is contained in the scattering matrix at the
Fermi energy
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FIG. 2. (a) Shown schematically are four classical trajectories
p; q; r; s connecting two incoming modes m1; n1 to two out-
going modes m2; n2 such that the diagram contributes to the
semiclassical approximation of Eq. (2). A contribution to
Eq. (6) results only if the trajectories are correlated such that
the action difference between p; r (solid lines) and q; s (dashed
lines) remains small for varying energy. (b),(c) The simplest
configurations where this is the case: Two trajectories are
pairwise equal (diagonal approximation). (d) The configuration
which completely accounts for the universal shot noise in
leading order.
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Shot noise represents temporal current fluctuations due to
the discreteness of the electron charge [26]. At zero
temperature, the average power of the noise can be ex-
pressed in terms of the transmission matrix t as [5,27]

P � 2ejVjG0Tr tt
y�1� tty�; (2)

while the assumption of uncorrelated electrons yields
PPoisson � 2ejVjG. Here G � G0Tr tty denotes the con-
ductance, e is the electron charge, V the voltage, and
G0 � 2e2=h the conductance quantum. RMT yields [5]

hPiRMT � 2ejVjG0N
2
1N

2
2=�N1 
 N2�

3; (3)

and for the conductance hGiRMT � G0N1N2=�N1 
 N2�.
Each result comes with a weak localization correction
which is small (h�Pi � hPi, h�Gi � hGi) for large N1,
N2 and will not be considered here. For N1 � N2, the
Fano factor F � hPi=hPPoissoni � 1=4 is obtained.

We will show that Eq. (3) can be recovered semiclas-
sically. To this end, the element tn2n1 of the transmission
matrix is expressed as a sum over all classical trajectories
[28] connecting the incoming mode 1 � n1 � N1 with
the outgoing mode 1 � n2 � N2 [29]

tn2n1 �
X
p

ApeiSp= �h; (4)

where Sp denotes the classical action and Ap is an am-
plitude related to the stability of the trajectory. While for
the conductance we have to evaluate a sum over pairs of
trajectories

hTr ttyi �
XN1

n1�1

XN2

n2�1

X
pq:n1!n2

ApA�
qhei= �h�Sp�Sq�i; (5)

the shot noise involves also a term combining four clas-
sical paths:

hTr �tty�2i �
X
m1n1

X
m2n2

X
pqrs

ApA
�
qArA

�
s � hei= �h�Sp�Sq
Sr�Ss�i:

(6)

Here, the trajectories p; q; r; s connect two incoming to
two outgoing modes as shown in Fig. 2(a). As Eqs. (5) and
(6) describe one particular system rather than an en-
semble, the average h�i is to be taken over an energy
window. It should be small enough to keep the classical
dynamics and the amplitudes Ap essentially unchanged.
Nevertheless, in the semiclassical limit �h ! 0, the phase
factor is rapidly oscillating and only those orbit combi-
nations survive the averaging for which the action
changes are correlated.

In particular, setting p � q in Eq. (5), the phase drops
out and we are left with a sum over classical probabilities
jApj

2. This is the diagonal approximation [7]. Provided
134101-2
that the dwell time inside the open cavity is large
compared to the time needed for equidistribution over
the available phase space, the probability is the same
for all outgoing modes and hGiRMT is exactly recovered
[4]. Hence, the contribution from other pairs of corre-
lated trajectories that might exist must vanish although
no explicit demonstration of this fact has been given
until now. In the presence of time-reversal symmetry,
the above remains valid to leading order in the mode
number N.

For shot noise, the diagonal approximation has two
analogues [Figs. 2(b) and 2(c)]: We can have (i) p � q,
r � s for m1 � n1 and (ii) p � s, r � q for m2 � n2. In
both cases, no phases are left in Eq. (6) and the remaining
summation is over two independent classical trajectories
p, r with the only constraint that they begin or end at the
same mode, respectively. Proceeding as in the diagonal
approximation to the conductance, we obtain [30]

XN1

m1�1

XN2

m2;n2�1

X
pr

jApj
2jArj

2 �
N1N

2
2

�N1 
 N2�
2 ; (7)

XN1

m1;n1�1

XN2

m2�1

X
pr

jApj
2jArj

2 �
N2

1N2

�N1 
 N2�
2 : (8)

Combining these two results, we find

hTr �tty�2idiag � hTr ttyidiag � N1N2=�N1 
 N2�; (9)

and, according to Eq. (2), this means that within the
diagonal approximation there is no shot noise. This is no
surprise: The diagonal approximation reduces the quan-
tum to the classical problem and, since classical dynam-
ics is deterministic, there is no uncertainty if an incoming
134101-2
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electron is transmitted or not and, hence, no noise [14,31].
On the other hand, Eq. (9) is quite remarkable as it means
that within the semiclassical approximation shot noise is
entirely due to nontrivial correlations between different
trajectories.

What is the general mechanism for such correlations?
Previous research [9–13] showed that pairs of trajectories
have correlated actions if they explore the same (or
symmetry-related) parts of phase space with a differ-
ent itinerary. In terms of symbolic dynamics, the code
words for the two orbits are composed of the same
sequences, in permuted order. The analogy to diagram-
matic perturbation theory and some recent results [11,12]
suggest further that the importance of the correlations
decreases with a growing number of sequences needed to
represent the code of the trajectories: In the diagonal
approximation to the conductance, the codes are equal
and the result is correct to leading order, orbit pairs
composed of two loops give the next-to-leading order
correction, etc.

In the case of shot noise, we have exhausted the diago-
nal approximation and consider therefore trajectories
p; q; r; s whose codes can all be represented in terms of
two subsequences. Inspection shows that the only option
is the diagram of Fig. 2(d). Indeed the phase in Eq. (6)
will almost vanish for such contributions since the com-
bination of p; r (solid lines) almost coincides with the
combination of q; s (dashed lines) such that the respective
actions cancel. A remaining small total action difference
comes from the different behavior of the trajectories in-
side the crossing region. In this respect, the correlated
trajectories of Fig. 2(d) are very similar to those giving
rise to weak localization effects [11–13]; i.e., the methods
developed there for various specific systems should allow
for a straightforward generalization to shot noise.

In the remainder of this Letter, we treat one of those
systems explicitly, namely, the quantum graph shown in
Fig. 1(b). The closed version of this graph consists of a
central vertex with valency B and b � 1 � � �B attached
bonds with incommensurate lengths Lb. Following the
standard quantization [23], the dynamics of a particle
with wave number k � �2mE�1=2= �h is represented by a
B� B bond-scattering matrix �bb0 �k� � �bb0e

2ikLb con-
taining energy-dependent phases 2kLb from the free mo-
tion on the bonds and complex amplitudes �bb0 describing
the scattering at the central vertex. A basic requirement is
unitarity (current conservation)

���0 �
XB
��1

�����
��0 ; (10)

otherwise � can be chosen according to the physical
situation. For simplicity, we set

�bb0 � e2�ibb
0=B=

����
B

p
; (11)

such that all classical transition probabilities are equal
134101-3
j�bb0 j
2 � 1=B. This model was first considered by Tanner

[25], who showed numerically that its spectral statistics
follows RMT. We open the graph by extending N � N1 

N2 bonds to infinity and model a two-channel geometry
by considering N1 (N2) of these leads as the modes in the
left (right) contact [Fig. 1(b)]. For fixed N1, N2 we will
consider the limit B ! 1 in order to meet the condition
of a long dwell time which was already mentioned in
connection with the diagonal approximation. Within the
leading order in B, we also neglect lower-order correc-
tions in the mode numbers N1, N2 in order to compare our
result to Eq. (3).

For a graph, the N � N unitary scattering matrix
Eq. (1) can be expressed in terms of subblocks of the
bond-scattering matrix � via S � �LL 
�LG�I �
�GG�

�1�GL [23]. L � L1 [L2 denotes here the set
of N � N1 
 N2 leads and G comprises the B� N
bonds inside the graph. Expanding the Green’s function
of the internal part �I � �GG�

�1 into a geometric series,
we arrive at Eq. (4) which is in the case of graphs an
identity rather than a semiclassical approximation. The
sum is over all trajectories (� bond sequences) p �
�n1p1 � � �ptn2� connecting the lead n1 2 L1 to the lead
n2 2 L2 via an arbitrary number t � 0 of internal bonds
pj 2 G. The action is related to the total length of the
trajectory, Sp= �h � kLp, where Lp �

P
t
j�1 Lpj . Finally,

the amplitude is given as Ap � �n1p1
�p1p2

� � ��ptn2 such
that the classical probability of the trajectory is jApj

2 �
1=Bt
1. Consequently, we have

X
p

jApj
2 �

X1
t�0

�B� N�t

Bt
1 �
1

N
; (12)

from which we do indeed recover the diagonal approxi-
mation Eqs. (7)–(9).

Next we consider trajectories p; q; r; s which are com-
posed of four sequences a; b; c; d as shown in Fig. 2(d)
and assume that each of these sequences has a length
t � 1. In order to avoid overcounting, we have to ensure
that for any given set p; q; r; s the definition of a; b; c; d is
unique. Potential problems arise if all four trajectories
coincide in the crossing region for one (or more) steps:
p � �a#c�, q � �b#c�, r � �b#d�, s � �a#d�. It is a mat-
ter of taste if # in these situations is considered as part of
a and b or of c and d. We use the first representation and
enforce it by the restriction ci � di. (The subscripts i=f
are used for the initial/final bond in a; b; c; d.)

Returning to Eq. (6), we note that the actions of p; r
and q; s cancel exactly such that the phase factor is absent.
As in Eq. (12), we can perform the summation over all
internal bonds of the subsequences a; b; c; d and also over
the leads m1; n1; m2; n2. Only the amplitudes from tran-
sitions right at the intersection of a; b; c; d do not combine
into classical probabilities and must be considered explic-
itly. We obtain
134101-3
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t�4�abcd �
N2

1N
2
2

N4

X
afbf ;ci�di2G

�afci�
�
bfci

�bfdi�
�
afdi

�
N2

1N
2
2

N4

X
afbf2L

X
cidi2G

�afci�
�
bfci

�bfdi�
�
afdi

�1� �cidi�

(13)

�
N2

1N
2
2

N4

 X
af�bf2L

X
cidi2G



X

af�bf ;cidi2L

�
X

af�bf2L

X
ci�di2G

!
�afci�

�
bfci

�bfdi�
�
afdi

(14)

�
N2

1N
2
2

N3 
O�B�1�: (15)

To perform this calculation, we have repeatedly used
Eq. (10) in a form which allows one to transfer summa-
tions from the graph G to the leads LX

�2G

����
�
��0 � ���0 �

X
�2L

����
�
��0 : (16)

The second and the third sums in Eq. (14) yield only a
negligible correction O�B�1� because the number of
terms are N3�N � 1� and N�N � 1��B� N�, respectively,
and j�afci�

�
bfci

�bfdi�
�
afdi

j � B�2.
With exactly the same methods, we can consider the

contribution from special cases of the diagram in
Fig. 2(d) where the length of one of the subsequences
a; b; c; d vanishes. We find that for vanishing a or b we
get t�4�bcd � t�4�acd � �t�4�abcd while for vanishing c or d no
contribution results. Finally, we have hTr �tty�2i �
t�4�abcd 
 t�4�bcd 
 t�4�acd � �N2

1N
2
2=N

3 and substitution of this
result into Eq. (2) shows that we have indeed reproduced
the RMT result from correlated classical trajectories.

We have checked that our result remains unchanged if
we substitute in Eq. (2) Tr tty�1� tty� � Tr ttyrry.
Quantum mechanically, this is just a consequence of
unitarity, but within the semiclassical approach it is a
nontrivial result since entirely different trajectories con-
tribute and unitarity is restored only if all relevant corre-
lations between them are properly accounted for.

We are grateful to O. Agam and H. Schomerus for
stimulating our interest in the problem.
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