
VOLUME 84, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 FEBRUARY 2000
Periodic-Orbit Theory of Anderson Localization on Graphs
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We present the first quantum system where Anderson localization is completely described within
periodic-orbit theory. The model is a quantum graph analogous to an aperiodic Kronig-Penney model
in one dimension. The exact expression for the probability to return to an initially localized state is
computed in terms of classical trajectories. It saturates to a finite value due to localization, while the
diagonal approximation decays diffusively. Our theory is based on the identification of families of
isometric orbits. The coherent periodic-orbit sums within these families, and the summation over all
families, are performed analytically using advanced combinatorial methods.

PACS numbers: 05.45.Mt, 03.65.Sq, 71.23.An
Anderson localization is a genuine quantum phenome-
non. So far, attempts to study this effect within a semiclas-
sical (periodic-orbit) theory seemed to be doomed to fail
from the outset: It is not clear whether the leading semi-
classical approximation for the amplitude associated with
a single classical orbit is sufficiently accurate. Even more
seriously, there is no method available to add coherently
the contributions from the exponentially large number of
contributing orbits. Here, we address the second problem
and develop a method to perform the coherent periodic-
orbit (PO) sums in a standard model—a quantum graph
analogous to the Kronig-Penney model in 1D—for which
the PO theory is exact. For a list of references on the long
history of graph models, see [1].

For investigating Anderson localization we consider the
quantum return probability (RP). It is defined as the mean
probability that a wave packet initially localized at a site
is at the same site after a given time. We show that the
long-time RP approaches a positive constant, which proves
that the spectrum has a pointlike component with normal-
izable eigenstates. The asymptotic RP is the inverse par-
ticipation ratio, which is a standard measure of the degree
of localization. The RP can also be seen as a two-point
form factor of the local spectrum [2]. As such, it belongs
to the class of quantities which can be expressed as dou-
ble sums over PO’s of the underlying classical dynamics
[3]. Because of the exponential proliferation of the PO’s
in chaotic systems, the resulting sums are hard to perform.
Consequently, most semiclassical approaches to spectral
two-point correlations were restricted to the diagonal ap-
proximation where the interference between different PO’s
is neglected [2–6]. While this method is very successful
for short-time correlations, it fails to reproduce long-time
effects such as Anderson localization which are due to
quantum interferences. In [7] the universal long-time be-
havior of the form factor was related to universal classical
action correlations between PO’s of a chaotic system. A
deeper understanding of how quantum universality is en-
coded in classical correlations is highly desirable but still
lacking, despite some recent progress [8,9]. This context
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is our motivation for developing the first PO theory of 1D
Anderson localization, although the phenomenon as such
is well understood [10–14].

Quantum graphs exhibit both classical and quantum uni-
versal properties, which qualify them as model systems
in quantum chaos [1]. The PO theory in graphs is exact.
Hence, graphs are well suited for the study of PO correla-
tions and their expected universal features. Recently, we
reproduced the complete form factor of the circular unitary
ensemble of 2 3 2 random matrices using a PO expansion
in a simple quantum graph [15]. The new combinatorial
tools developed there will be used to compute the quantum
RP, by extending a method due to Dyson [16] for summing
over orbits in a 1D topology.

We consider a quantum graph with a 1D chain
topology and use the intuitive notation as indicated in
Fig. 1. The bond lengths Lj � xj11 2 xj are disordered,
i.e., pairwise rationally independent. On a bond j the
general solution of the 1D Schrödinger equation for
wave number k is Cj�x� � aj,1 exp�1ik�x 2 xj�� 1

aj,2 exp�2ik�x 2 xj11��. The matching of solutions
across a vertex is achieved in terms of a unitary scattering
matrix sj�rj , tj� such that√

aj21,2

aj,1

!
�

√
tj rj

rj tj

! √
eikLj aj,2

eikLj21aj21,1

!
. (1)

The phase factors on the right hand side account for the free
motion on the bonds. The matrices sj will be assumed in-
dependent of k and are parametrized as rj � i coshj , tj �
sinhj . A similar model was used, e.g., in the analysis of
an optical experiment demonstrating Anderson localization
in the transmission of light through a disordered stack of
transparent mirrors [17]. The vertex-scattering matrices
sj could also be computed by assuming d potentials at
x � xj , as in the Kronig-Penney model [18]. In the fol-
lowing we consider two situations: (i) random s, where
the hj are independent random variables distributed such
that the corresponding transmission and reflection proba-
bilities Tj � jtjj

2, Rj � jrjj
2 are uniformly distributed in
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FIG. 1. Top: Quantum chain graph with vertices (dots) and
bonds (line segments). The bold arrow shows the initial state
used to compute the RP. Bottom: The family �m0, m1, m2� �
�1, 2, 2� of different but isometric orbits returning after topo-
logical time n � 10 to the vertex 0.

the interval �0, 1�; and (ii) constant s, where Tj � T ,
Rj � R ; j.

At fixed k we consider the Hilbert space of coefficient
vectors a � aj,y where j goes over the vertices, and y �
6. We introduce a unitary operator

Uj0,y0;j,y�k� � eikLj �d1y0,ydj0,j1ytj1
y11

2

1 d2y0,ydj0,jrj1 y11
2

� . (2)

The map defined by U�k� describes the time evolution
of a coefficient vector. It is the natural object for the
investigation of the graph [1]. k is an eigenvalue of the
graph Hamiltonian if and only if 1 is in the spectrum of
U�k�, that is when all the matching conditions (1) can be
satisfied simultaneously, a � U�k�a. In terms of U we
can characterize the degree of localization by calculating
the averaged quantum RP,

P �n� � �j�Un�0,1;0,1j
2� , (3)

as a function of the discrete topological time n of a state
which was initially prepared as aj,y � dj,0dy,1 (arrow in
Fig. 1, top). The average �· · ·� in (3) is over a large k
interval, and for random s also over the ensemble of s

defined above. Because of the structure of U, P �n� fi 0
only for even n � 2m.

The classical analog of the quantum graph [1] is a
Markovian random walk with vertex reflection and trans-
mission probabilities which are equal to the quantum me-
chanical ones defined above. A classical trajectory is
encoded by the sequence of traversed vertices 	 jn
 which
must be consistent with the connectivity of the graph. In
our case yn � jn11 2 jn � 61. Given the initial vertex,
a trajectory can also be identified uniquely by the sequence
	yn
. Because of the probabilistic nature of the dynamics
all trajectories are unstable. In general, the representation
of a quantum evolution operator in terms of classical tra-
jectories involves a semiclassical approximation. Here it
is exact and amounts simply to expanding the matrix prod-
ucts in (3). The result

P �n� �

*É X
l

Al exp�ikLl�

É2+
(4)
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can be interpreted in terms of the classical trajecto-
ries introduced above. l runs over all trajectories
contributing to the RP (3), i.e., all sequences 	yn

(n � 0, . . . , n 2 1) with

P
n yn � 0. The traversed

vertices are jn �
P

n0#n yn0 . For graphs, the concepts
of returning trajectories and PO’s coincide; hence, (4)
is a PO sum. The length of an orbit is Ll �

Pn21
n�0 Ljn

,
such that kLl is the corresponding action in units of h̄.
The amplitude Al is the product of the transmission
and reflection amplitudes accumulated along the orbit
Al �

Qn
n�1 Al,n with Al,n � tjn

if yn11 � yn and
Al,n � rjn

otherwise. It was shown in [1] that jAlj
plays the role of the stability amplitude of the orbit, while
the phase of Al is equivalent to the Maslov index.

Expanding j · · · j2 in (4) we obtain a double sum over
PO’s of the type studied in [3]. For short time n, the
interference terms pertaining to two different PO’s which
are not related by an exact symmetry can be neglected
due to the averaging applied. For constant s with T �
R � 1�2 this diagonal approximation simply amounts to
counting the number of classical PO’s with period n � 2m
since all weights jAlj

2 � 22n coincide. Any such PO
is represented by a code word 	yn
 containing m letters
1 and 2, respectively. According to the initial condition
y1 � 1. Hence, each PO l in (4) corresponds to a way
of selecting from the remaining n 2 1 time steps those m
with negative velocity, and we have

Pcl�n � 2m� �
1
2n

µ
n 2 1
n�2

∂
�

1
p

2np
�n ! `�

(5)

(triangles in Fig. 2). It is well known that the diagonal
approximation yields the classical RP [2]. And indeed, for
long time n (5) shows the expected classical diffusion. The
decay of the classical RP to 0 corresponds to the obvious
fact that there is no localization in the classical analog of
our model.
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FIG. 2. Exact quantum and classical return probability P �2m�
as given by Eqs. (5) and (10).
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In the following we will show that a constructive inter-
ference between PO’s with a different number of reflec-
tions but equal lengths leads to a finite saturation value of
the exact RP and consequently to localization [19]. When
(3) is expanded into a double sum, only pairs of orbits with
equal lengths survive the k average. Hence, all relevant
interferences are confined to families of isometric orbits.
Suppose a PO l returning to bond �0, 1� after 2m colli-
sions with vertices traverses the bonds � j, 1� and � j, 2�
mj times, respectively (

P
j mj � m). The length of this

PO is Ll � 2
P

j mjLj . Thus, for rationally independent
bond lengths Lj a family of isometric orbits contains all
orbits sharing the set L � �m0, m61, . . .�. In contrast to
the diagonal approximation, these are not only symme-
try-related orbits. A simple example is shown in Fig. 1
(bottom), but with increasing orbit length families can con-
tain more and more PO’s. Taking into account orbit fami-
lies Eq. (4) becomes

P �n � 2m� �
X

L[Fn

É X
l[L

Al

É2
�

X
L[Fn

P �L � . (6)

The outer sum is over the set Fn of families, while the
inner one is a coherent sum over the orbits belonging
to a given family. The phase and amplitude of each PO
depend on its itinerary. The phase equals the parity of
half the number of reflections. Had one assumed that
these phases are randomly distributed within a family, (6)
would again reduce to the diagonal approximation [20].
In contrast, the exact result derived below from Eq. (6) is
shown in Fig. 2. For both, constant and random s, the RP
saturates to a finite value indicating localization. Hence,
quantum localization is due to a delicate and systematic im-
balance between positive and negative terms within fami-
lies. This can be regarded as a classical correlation
(deviation from a random distribution) of phases of PO’s.
The saturation value, i.e., the inverse participation ratio, is
expected to be inversely proportional to the localization
length and the classical diffusion constant, see, e.g., [6],
and references therein. Indeed we find for constant s and
a diffusion constant D � T��1 2 T � ¿ 1 the relation
limm!` P �2m� � �Dp�21 [20].

In the sequel we outline the analytical evaluation of
Eq. (6), deferring a detailed exposé to a subsequent
publication [20]. A sum with a similar structure was
calculated by Dyson [16] to study a disordered chain of
harmonic oscillators. This system is analogous to our
model, but Dyson computed a different quantity—the
density of states. It is essentially different from the RP
because the latter is a two-point correlation function.
Dyson computed the traces of powers of a Hermitian
matrix and did not have to keep track of the phases
encountered in the computation of diagonal elements of
powers of a unitary matrix. Consequently the combinato-
rial arguments needed to evaluate (6)—though similar in
spirit to Dyson’s approach—are quite different from [16].

To start, we consider a one-sided graph with j $ 0, and
R0 � 1, and perform the coherent sum over all orbits l
FIG. 3. This figure corresponds to vertex 2 in Fig. 1, which
is approached twice from the left and from the right. The right
pointing arrows can be arranged in three distinct ways, which
correspond to the three decompositions of the number 2 into
two non-negative integers 2 � 1 1 1 � 0 1 2 � 2 1 0 (left
to right).

in a given family. To keep track of the precise number of
reflections for each orbit, we choose to specify the orbit
by the segments with positive velocity yn � 1. In the
schematic representation of Fig. 1 (bottom) these are the
arrows which point to the right. When the left pointing ar-
rows are deleted from the bonds 1 and 2 in Fig. 1 (bottom)
one obtains the arrow structures displayed in Fig. 3. The
vertical displacement of the arrows provides the informa-
tion about the time ordering which is necessary to recon-
struct the complete orbit from the right pointing arrows.
The lower an arrow, the later it appears in the trajectory.
The number of arrows to the left (right) of the vertex j is
mj21 (mj). An orbit can be completely specified by pre-
scribing, at all vertices, in which order the adjacent arrows
are traversed. Note that this local time order can be cho-
sen independently for each vertex. As a consequence, the
factorization

P ��m0, . . . , mb21�� � Vb�mb21�
b21Y
j�1

Vj�mj , mj21� (7)

results. b denotes the rightmost vertex along the orbit, i.e.,
mj � 0 ; j $ b. The local contribution Vj�mj , mj21�
from a vertex will be determined in the following.

Each local time order at vertex j corresponds to one
of � mj1mj2121

mj2121 � possibilities to distribute mj identical ob-
jects over mj21 sites, or, in other words, to decompose mj

into mj21 non-negative summands (Fig. 3). The number
of transmissions to the right at vertex j is given by the
number of nonzero terms in this decomposition. We can
express Vj�mj , mj21� as a sum taking into account the
number n of such transmissions, together with the associ-
ated amplitude. We obtain

Vj �

É X
n

µ
mj21

n

∂ µ
mj 2 1
n 2 1

∂
t2n
j r

mj1mj2122n

j

É2
. (8)

The standard definition of binomial coefficients ensures
that the sum can be taken over all integers n. The power
of tj in the expansion (8) is 2n since the number of trans-
missions to the left and to the right is the same. �mj21

n21 � is
the number of decompositions of mj into n positive sum-
mands and � mj21

n � corresponds to selecting the n nonzero
terms from all mj21 summands. The sum in (8) is a special
Kravtchouk polynomial—a well-known object in combi-
natorics [15,21].

With (7) and (8) we can perform the summation over
all orbits l of a given family in (6). However, there arePm

b�1�m21
b21 � � 2m21 decompositions of an integer m into

positive summands mj; i.e., the number of families grows
1429
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exponentially with time. To sum over all families we derive
a recursion relation which dramatically reduces the num-
ber of terms needed. Grouping in (6) all terms according to
the number of traversals of the first two bonds m0 and m1,
i.e., defining Bm�m0, m1� �

P
m2,... P ��m0, m1, m2, . . .��,

we find Bm�s 1 1, t� � V �t, s 1 1��V �t, s�Bm21�s, t�
for s $ 0 and Bm�1, t� � V �t, 1�

Pm22
s�1 Bm21�t, s�. Sum-

ming over the second argument of Bm�s, t� we obtain
the combined contribution Vm�s� from all orbits with
period 2m which traverse the initial bond exactly s times
before finally returning to it. The corresponding recursion
relation is

Vm�t� �
m2tX
s�1

V �s, t�Vm2t�s� �1 # t , m� . (9)
1430
The recursion is initialized using the elements Vm�m�,
which are due to a single PO: the orbit bouncing m times
between the vertices j � 0 and j � 1. The RP for the
one-sided graph is now P �2m� �

Pm
s�1 Vm�s�.

For the unrestricted graph a returning trajectory can be
composed of simple loops to the right and to the left from
the initial bond. Both groups can be described by the
results for the one-sided problem. Using similar arguments
as in the derivation of (8) we find

P �2m� �
mX

mr �1

mrX
s�1

Vm2mr 1s�s�Vmr �s� . (10)

We were able to solve the recursion (10) analytically for
random s. After expanding j · · · j2 in (8) and using the
parametrization rj � i coshj , tj � sinhj we get
V
�av�

j �mj , mj21� �
1
2

Z p�2

0
sin2hj dhj Vj�mj , mj21, hj�

�
m2

j

mj21 1 mj 1 1

X
n,n0

�21�n1n0

nn0

µ
mj21 1 mj

n 1 n0

∂21µ
mj21 2 1

n 2 1

∂ µ
mj 2 1
n 2 1

∂ µ
mj21 2 1

n0 2 1

∂ µ
mj 2 1
n0 2 1

∂

�
2m2

j21

�mj21 1 mj 2 1� �mj21 1 mj� �mj21 1 mj 1 1�
. (11)
The last equality follows from an identity which we
proved previously [15] using recent developments in
combinatorial theory [22]. For the outmost vertex on an
orbit (11) simplifies to P

�av�
b �mb21� � 1��mb21 1 1�.

Consequently we can initialize the recursion (9) by
V

�av�
m �m� � 1��m 1 1�, which results in V

�av�
m �s� �

s��m2 1 m�. Summing with respect to s we find that the
RP of the one-sided graph is constant Pos�2m� � 1�2 for
m . 0. For the unrestricted graph and m ! ` the double
sum in (10) can be approximated by a double integral
yielding limm!` P �2m� � p2�3 2 3 which is indeed the
saturation value of the top curve in Fig. 2.

In summary, we have shown that Anderson localization
can be reproduced from PO theory only when classical
correlations are properly taken into account. Here, these
correlations show up as exact isometries of families of
PO’s, and the nonrandom distribution of the phases within
a family. The failure of the diagonal approximation in
a model where PO theory is exact identifies the neglect
of action correlations as the primary source of errors in
semiclassical theories of localization and related problems.
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