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ABSTRACT
We consider the SchroÈ dinger operator on graphs and study the spectral

statistics of a unitary operator which represents the quantum evolution, or a
quantum map on the graph. This operator is the quantum analogue of the
classical evolution operator of the corresponding classical dynamics on the
same graph. We derive a trace formula, which expresses the spectral density of
the quantum operator in terms of periodic orbits on the graph, and show that one
can reduce the computation of the two-point spectral correlation function to a
well de® ned combinatorial problem. We illustrate this approach by considering
an ensemble of simple graphs. We prove by a direct computation that the two-
point correlation function coincides with the circular unitary ensemble expression
for 2 £ 2 matrices. We derive the same result using the periodic orbit approach in
its combinatorial guise. This involves the use of advanced combinatorial
techniques which we explain.

} 1. INTRODUCTION
We have recently shown (Kottos and Smilansky 1997, 1999) that the SchroÈ dinger

operator on graphs provides a useful paradigm for the study of spectral statistics and

their relations to periodic orbit theory. In particular, the universal features that are

observed in quantum systems whose classical counterpart is chaotic, appear also in

the spectra of quantum graphs. This observation was substantiated by several

numerical studies. The relevance to quantum chaology was established by identifying
the underlying mixing classical evolution on the graphs, which provides the stability

coe� cients and actions of periodic orbits in whose terms an exact trace formula can

be written (Kottos and Smilansky 1997, 1999, Roth 1983).

In spite of the large amount of eŒort invested in the past 15 years (Berry 1985,

Bogomolny and Keating, 1996), we have only a limited understanding of the reasons

for the universality of spectral statistics in systems whose classical dynamics are
chaotic. The main stumbling block is the lack of understanding of the intricate

and delicate interference between the contributions of (exponentially many) periodic
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orbits. This genuinely quantum quantity, (also known as the `oŒ-diagonal’ contribu-

tion) is the subject of several research studies, which address it from various points of

view (Argaman et al. 1993, Agam et al. 1995, Bogomolny and Keating 1966, Cohen
et al. 1998, Miller 1998). The present contribution attempts to illuminate this issue

from yet another angle, and we harness for this purpose quantum graphs and com-

binatorics.

Our material is presented in the following way. We shall start by de® ning the

quantum dynamics on the graph in terms of a quantum map. This map will be
represented by a unitary matrix, which is the quantum analogue of the classical

Frobenius± Perron operator of the properly de® ned classical dynamics on the

graph. The spectrum of the quantum operator is on the unit circle, and its statistics

are the main object of the present work. After de® ning the two-point correlation

function of interest, we shall write it down in terms of periodic orbits and discuss the
combinatorial problem which should be addressed in order to obtain a complete

expression which includes the `oŒ-diagonal’ contribution. Since the random-matrix

theory (RMT) is known to reproduce the two-point correlation function for generic

graphs, we propose that the RMT expression could be obtained from a combi-

natorial theory, perhaps as the leading term in an asymptotic expansion. For one

particular example we show that this is indeed the case in the last section. There we
construct an ensemble of simple graphs with non-trivial spectral statistics, which can

be solved in two independent ways. The direct way yields the statistics of RMT for

the 2 £ 2 circular unitary ensemble (CUE). The corresponding periodic orbit calcu-

lation is converted into a combinatorial problem, which is solved by proving a

previously unknown combinatorial identity.

} 2. THE QUANTUM SCATTERING MAP AND ITS CLASSICAL ANALOGUE

2.1. General de® nitions for quantum graphs
We shall start with a few general de® nitions. Graphs consist of V vertices con-

nected by B bonds (or edges). The valency vi of a vertex i is the number of bonds

meeting at that vertex. Associated with every graph is its connectivity (adjacency)

matrix Ci; j. It is a square matrix of size V whose matrix elements Ci; j are given in the

following way

Ci; j ˆ Cj;i ˆ
1 if i; j are connected

0 otherwise

» ¼
…i; j ˆ 1; . . . ; V †: …1†

The valency of a vertex is given in terms of the connectivity matrix, by vi ˆ
PV

jˆ1 Ci; j
and the total number of bonds is B ˆ 1

2

PV
i; jˆ1 Ci; j.

When the vertices i and j are connected, we shall assume that the connection is

achieved by a single bond, such that multiple bonds are excluded. We denote the

connecting bond by b ˆ ‰i; jŠ. Note that the notation ‰i; jŠ will be used whenever we
do not need to specify the direction on the bond. Hence ‰i; jŠ ˆ ‰ j; iŠ. Directed bonds

will be denoted by …i; j†, and we shall always use the convention that the bond is

directed from the ® rst index to the second one. To each bond ‰i; jŠ we assign a length

L ‰i; jŠ ˆ L …i; j† ˆ L …j;i†. In most applications we would avoid non-generic degeneracies

by assuming that the L ‰i; jŠ are rationally independent. The mean length is de® ned by
hL i ² …1=B†

PB
bˆ1 L b.
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For the quantum description we assign to each bond b ˆ ‰i; jŠ a coordinate xb
which measures distances along the bond. We may use x…i; j† which is de® ned to take

the value 0 at the vertex i and the value L …i; j† ² L … j;i† at the vertex j. We can also use

x…j;i† which vanishes at j and takes the value L …i; j† at i.
The wavefunction W is a B-component vector and will be written as …Cb1

…xb1
†,

Cb2
…xb2

†; . . . ; CbB
…xbB

††T where the set fbigB
iˆ1 consists of all the B distinct bonds on

the graph. We shall call Cb…xb† the component of W on the bond b. The bond

coordinates xb were de® ned above. When there is no danger of confusion, we
shall use the shorthand notation Cb…x† for Cb…xb† and it is understood that x is

the coordinate on the bond b to which the component Cb refers.

The SchroÈ dinger equation is de® ned on the graph in the following way

(Alexander 1985, Avron 1994) (see also Kottes and Smilansky (1999) for an extensive

list of references on the subject): on each bond b, the component Cb of the total
wavefunction W is a solution of the one-dimensional equation

¡i
d

dx…i; j†
¡ A…i; j†

´2

Cb…x…i; j†† ˆ k2Cb…x…i; j†† …b ˆ ‰i; jŠ†:

Á
…2†

We included a `magnetic vector potential’ A…i; j†, with A…i; j† ˆ ¡A… j;i† which breaks

time-reversal symmetry.

On each of the bonds, the general solution of equation (2) is a superposition of

two counter-propagating waves

Á…i; j†…x…i; j†† ˆ exp ‰i…kx…i; j† ‡ A…i; j†x…i; j††Š;

Á… j;i†…x… j;i†† ˆ exp ‰i…kx… j;i† ‡ A… j;i†x… j;i††Š:
…3†

Note that the above functions are normalized to have an amplitude 1 at the points

from which they `emerge’ , namely Á…i; j† ˆ 1 at the vertex i and Á… j;i† ˆ 1 at the vertex

j. The Hilbert space of the solutions of equation (2) is spanned by the set of functions
de® ned above, such that, for all b ˆ ‰i; jŠ,

Cb ˆ a…i; j†Á…i; j†…x…i; j†† ‡ a… j;i†Á… j;i†…x… j;i††: …4†

Thus, the as yet undetermined coe� cients a…i; j† form a 2B-dimensional vector of

complex numbers, which uniquely determines an element in the Hilbert space of
solutions. This space corresponds to f̀ree-wave’ solutions since we have not yet

imposed any conditions which the solutions of equations (2) have to satisfy at the

vertices.

2.2. The quantum scattering map

The quantum scattering map is a unitary transformation acting in the space of

free waves, and it is de® ned as follows.

In a ® rst step, we prescribe at each vertex i ˆ 1; . . . ; V a vertex scattering matrix

which is a unitary matrix of dimension vi. The vertex scattering matrices may be k
dependent and they are denoted by ¼

…i†
l;m…k†, where the indices l; m take the values of

the vertices which are connected to i, that is Ci;l ˆ Ci;m ˆ 1. The vertex scattering

matrix is a property which is attributed to the vertex under consideration. Either it

can be derived from appropriate boundary conditions as in the work of Kottos and

Smilamnsky (1997, 1999) or it can be constructed to model other physical situations.
The important property of ¼

…i†
l;m…k† in the present context is that any wave which is
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incoming to the vertex i from the bonds …l; i†, and which has an amplitude 1 at the

vertex, is scattered and forms outgoing waves in the bonds …i; m† with amplitudes

¼
…i†
l;m…k†.

Now, the quantum scattering map is represented by its eŒect on the 2B-dimen-

sional vector of coe� cients a ˆ fa…i; j†g, namely a is mapped to a 0 with components

a 0
b 0 ˆ

X2B

bˆ1

abSBb;b 0 ; …5†

where b and b 0 run over all directed bonds and, if we de® ne b ˆ …i; j† and b 0 ˆ …l; m†,

SB…i; j†;…l;m†
…k† ˆ ¯j;l exp ‰iL …i; j†…k ‡ A…i; j††Š¼

… j†
i;m…k†: …6†

The eŒect of SB on a wavefunction can be intuitively understood as follows. The

coe� cient a…i; j† is the (complex) amplitude of the wave which emerges from the

vertex i and propagates to the vertex j. Once it reaches the vertex j, it has accumu-

lated a phase exp ‰iL …i; j†…k ‡ A…i; j††Š and it scatters into the bonds which emanate
from j with an amplitude given by the appropriate vertex scattering matrix. The

new amplitude a 0
…lˆj;m† consists of the superposition of all the amplitudes contributed

by waves which impinge on the vertex l ˆ j and then scatter. The name `quantum

scattering’ map is justi® ed by this intuitive picture.

The resulting matrix SB is a 2B £ 2B unitary matrix. The unitarity follows simply
from the unitarity of the vertex scattering matrices, and from the fact that SB has

non-vanishing entries only between connected directed bonds: the incoming bond

aims at the vertex from which the outgoing bond emerges. The unitarity of SB
implies that its spectrum is restricted to the unit circle. In this paper we shall mainly

be concerned with the spectral statistics of the eigenphases, and their relation to the
underlying classical dynamics on the graph. The spectral statistics will be discussed in

the next section. We shall use the remaining part of the present section to clarify two

important issues. We shall ® rst show how one can use the quantum scattering map to

construct the space of solutions of the SchroÈ dinger operator on the graph with

boundary conditions. Then, we shall introduce the classical dynamics which corre-

spond to the scattering map.
To de® ne the space of `bound states’ on the graph, one has to restrict the space of

wavefunctions by imposing appropriate boundary conditions on the vertices. The

boundary conditions guarantee that the resulting SchroÈ dinger operator is self-

adjoint. We previously (Kottos and Smilansky 1997, 1999) described and used one

particular set of boundary conditions, which ensure continuity (uniqueness) and
current conservation. Here we shall use a slight generalization, which matches well

the spirit of the present article. We shall impose the boundary conditions in terms of

a consistency requirement that the coe� cients a…i; j† have to obey. Namely, we require

that the wavefunction (4) is stationary under the action of the quantum scattering

map. In other words, the vector a must be an eigenvector of SB…k† with a unit
eigenvalue. (See also Klesse (1996) and Klesse and Metzler (1997).) This requirement

can be ful® lled when

det ‰I ¡ SB…k†Š ˆ 0: …7†

We have actually derived (7) (Kottos and Smilansky 1997, 1999) for the particular
case in which the vertex scattering matrices were computed from a particular set of
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vertex boundary conditions which impose continuity and current conservation on

the vertices. The resulting vertex scattering matrices are

¼
…i†
j; j 0 ˆ ¡¯ 0

j; j ‡ 1 ‡ exp …¡i!i†
vi

³ ´
Ci; jCi; j 0 ; !i ˆ 2 arctan

¶i

vik

³ ´
: …8†

Here, 0 4 ¶i 4 1 are arbitrary constants. The `Dirichlet’ (`Neumann’ ) boundary

conditions correspond to ¶i ˆ 1…0†. The Dirichlet case implies total re¯ ection at

the vertex, ¼
…i†
j; j 0 ˆ ¡¯j; j 0 . For the Neumann boundary condition we have ¼

…i†
j; j 0 ˆ

¡¯j; j 0 ‡ 2=vi, which is independent of k. For any intermediate boundary

condition, the scattering matrix approaches the Neumann expression as k ! 1.
Note that, in all non-trivial cases (vi > 2), back-scattering ( j ˆ j 0) is singled out

both in sign and in magnitude: ¼
…i†
j; j always has a negative real part, and the re¯ ection

probability j¼…i†
j; jj

2 approaches unity as the valency v i increases. One can easily check

that r…i† is a symmetric unitary matrix, ensuring ¯ ux conservation and time-reversal

symmetry at the vertex. For Neumann boundary conditions, r…i† is a real orthogonal

matrix.
The spectral theory of the SchroÈ dinger operators on graphs can be developed

using equation (7) as the starting point. In particular, the corresponding trace for-

mula (Roth 1983) can naturally be derived and is related to the underlying classical

dynamics (Kottos and Smilansky 1997, 1999). Here, we shall study the quantum

scattering map in its own right, without a particular reference to its role in the
construction of the spectrum. We shall consider the ensemble of unitary 2B £ 2B
matrices SB…k†, where k is allowed to vary in a certain interval to be speci® ed later.

Our main concern will be the statistical properties of the eigenvalues of SB. This will

be explained in the next section.

2.3. The classical scattering map

The last point to be introduced and discussed in the present section is the classi-

cal dynamics on the graph and the corresponding scattering map.

We consider a classical particle which moves freely as long as it is on a bond. The

vertices are singular points, and it is not possible to write down the analogue of

Newton’ s equations at the vertices. Instead, one can employ a Liouvillian approach
based on the study of the evolution of phase-space densities. This phase-space

description will be constructed on a PoincareÂ section which is de® ned in the follow-

ing way. Crossing of the section is registered as the particle encounters a vertex, thus

the `coordinate’ on the section is the vertex label. The corresponding `momentum’ is

the direction in which the particle moves when it emerges from the vertex. This is
completely speci® ed by the label of the next vertex to be encountered. In other

words,

position

momentum

» ¼
$ vertex index

next index

» ¼
: …9†

The set of all possible vertices and directions is equivalent to the set of 2B directed

bonds. The evolution on this PoincareÂ section is well de® ned once we postulate the
transition probabilities P…i†

j!j 0 between the directed bonds b ˆ f j; ig and b 0 ˆ fi; j 0g.

To make the connection with the quantum description, we adopt the quantum

transition probabilities, expressed as the absolute squares of the SB matrix elements

P…i†
j!j 0 ˆ j¼…i†

j; j 0…k†j2: …10†
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When the vertex scattering matrices are constructed from the standard matching

conditions on the vertices (8), we obtain the explicit expression

P…i†
j!j 0 ˆ

¡ ¯ 0
j; j ‡ 1 ‡ exp …i!i†

vi


2

: …11†

For the two extreme cases corresponding to Neumann and Dirichlet boundary con-
ditions, this results in

P…i†
j!j 0 ˆ ¡¯j; j 0 ‡ 2

vi

³ ´2

; Neumann case;

¯ 0
j; j; Dirichlet case:

8
><

>:
…12†

The transition probability P…i†
j!j 0 for the Dirichlet case admits the following physical

interpretation. The particle is con® ned to the bond where it started and thus the

phase space is divided into non-overlapping ergodic components ( t̀ori’ ). For all
other boundary conditions the graph is dynamically connected.

The classical Frobenius± Perron evolution operator is a 2B £ 2B matrix whose

elements Ub;b 0 are the classical transition probabilities between the bonds b and b 0:

Uij;nm ˆ ¯j;nP…j†
i!m : …13†

U does not involve any metric information on the graph and, for Dirichlet or

Neumann boundary conditions, U is independent of k. This operator is the classical
analogue of the quantum scattering matrix SB. Usually, one `quantizes’ the classical

operator to generate the quantum analogue. For graphs the process is reversed, and

the classical evolution is derived from the more fundamental quantum dynamics.

Let »b…t†; b ˆ 1; . . . ; 2B denote the distribution of probabilities to occupy the

directed bonds at the (topological) time t. This distribution will evolve until the ® rst

return to the PoincareÂ section according to

»b…t ‡ 1† ˆ
X

b 0

Ub;b 0 »b 0 …t†: …14†

This is a Markovian master equation which governs the evolution of the classical

probability distribution. The unitarity of the graph scattering matrix SB guaranteesP2B
bˆ1 Ub;b 0 ˆ 1 and 0 4 Ub;b 0 4 1, such that the probability that the particle is on

any of the bonds is conserved during the evolution. The spectrum of U is restricted to

the unit circle and its interior, and ¸1 ˆ 1 is always an eigenvalue with the corre-

sponding eigenvector j1i ˆ …1=2B†…1; 1; . . . ; 1†T. In most cases, the eigenvalue 1 is the

only eigenvalue on the unit circle. Then, the evolution is ergodic since any initial

density will evolve to the eigenvector j1i which corresponds to a uniform distribution
(equilibrium).

»…t† ¡!
t!1 j1i: …15†

The mixing rate ¡ln j¸2j at which equilibrium is approached is determined by the gap

between the next largest eigenvalue ¸2 and 1. This is characteristic of a classically

mixing system.

However, there are some non-generic cases such as bipartite graphs when ¡1

belongs to the spectrum. In this case the asymptotic distribution is not stationary.
Nevertheless an equivalent description is possible for bipartite graphs when U is
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replaced by U2 which has then two uncoupled blocks of dimension B. The example

that we are going to discuss in the last section will be of this type.

Periodic orbits (POs) on the graph will play an important role in the following
and we de® ne them in the following way. An orbit on the graph is an itinerary (® nite

or in® nite) of successively connected directed bonds …i1; i2†; …i2; i3†; . . . : For graphs

without loops or multiple bonds this is uniquely de® ned by the sequence of vertices

i1; i2; . . . with im 2 ‰1; V Š and Cim ;im‡1
ˆ 1 for all m. An orbit is periodic with period n

if, for all k, …in‡k ; in‡k‡1† ˆ …ik; ik‡1†. The code of a PO of period n is the sequence of n
vertices i1; . . . ; in and the orbit consists of the bonds …im; im‡1† (with the identi® cation

im‡n ² im ). In this way, any cyclic permutation of the code de® nes the same PO.

The POs can be classi® ed in the following way:

(a) Irreducible POs. These are POs which do not intersect themselves such that

any vertex label in the code can appear at most once. Since the graphs are
® nite, the maximum period of irreducible POs is V . To each irreducible PO

corresponds its time-reversed partner whose code is read in the reverse order.

The only POs that are both irreducible and conjugate to itself under time

reversal are the POs of period 2.

(b) Reducible POs. These are POs whose code is constructed by inserting the
code of any number of irreducible POs at any position which is consistent

with the connectivity matrix. All the POs of period n > V are reducible.

(c) Primitive POs. These are POs whose code cannot be written down as a

repetition of a shorter code.

We introduced above the concept of orbits on the graph as strings of vertex
labels whose ordering obeys the required connectivity. This is a ® nite coding

which is governed by a Markovian grammar provided by the connectivity matrix.

In this sense, the symbolic dynamics on the graph are Bernoulli. This property adds

another piece of evidence to the assertion that the dynamics on the graph are chaotic.

In particular, one can obtain the topological entropy G from the symbolic code.
Using the relation

G ˆ lim
n!1

1

n
log ‰Tr …Cn†Š

³ ´
; …16†

one obtains G ˆ log ·v, where ·v is the largest eigenvalue of C.
Of prime importance in the discussion of the relation between the classical and

the quantum dynamics are the traces un ˆ Tr …Un† which are interpreted as the mean

classical probability to perform n-periodic motion. Using the de® nition (13) one can

write the expression for un as a sum over contributions of n-POs:

un ˆ
X

p2Pn

np exp …¡r®pnp†; …17†

where the sum is over the set Pn of primitive POs whose period np is a divisor of n,

with r ˆ n=np. To each primitive orbit one can assign a stability factor exp …¡®pnp†
which is accumulated as a product of the transition probabilities as the trajectory

traverses its successive vertices:

exp …¡®pnp† ²
Ynp

jˆ1

P
…ij†
ij¡1!ij‡1

: …18†
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The stability exponents ®p correspond to the Lyapunov exponents in periodic orbit

theory.

When only one eigenvalue of the classical evolution operator U is on the unit
circle, one has un ¡!

n!11. This leads to a classical sum rule

un ˆ
X

p2Pn

np exp …¡r®pnp† ¡!
n!11: …19†

This last relation shows again that the number of periodic orbits must increase

exponentially with increasing n to balance the exponentially decreasing stability
factors of the individual POs. The topological entropy can be related to the mean

stability exponent through this relation.

Using equation (17) for un, one can easily write down the complete thermody-

namic formalism for the graph. Here, we shall only quote the PO expression for the

Ruelle ± function:

±R…z† ² ‰det …I ¡ zU†Š¡1

ˆ exp f¡Tr ‰ln …I ¡ zU†Šg

ˆ exp

³ X

n

zn

n
un

´

ˆ
Y

p

1

1 ¡ znp exp …¡np®p† ; …20†

where the product extends over all primitive periodic orbits.

The above discussion of the classical dynamics on the graph shows that it bears a

striking similarity to the dynamics induced by area-preserving hyperbolic maps. The
reason underlying this similarity is that even though the graph is a genuinely one-

dimensional system, it is not simply connected, and the complex connectivity is the

origin and reason for the classically chaotic dynamics.

} 3. THE SPECTRAL STATISTICS OF THE QUANTUM SCATTERING MAP
We consider the matrices SB de® ned in equation (6). Their spectrum consists of

2B points con® ned to the unit circle (eigenphases). Unitary matrices of this type are

frequently studied since they are the quantum analogues of classical area-preserving

maps. Their spectral ¯ uctuations depend on the nature of the underlying classical

dynamics (Smilansky 1989). The quantum analogues of classically integrable maps
display Poissonian statistics while, in the opposite case of classically chaotic maps,

the statistics of eigenphases conform quite accurately with the results of Dyson’s

RMT for the circular ensembles. The ensemble of unitary matrices which will be used

for the statistical study will be the set of matrices SB…k† with k in the range

jk ¡ k0j 4 Dk=2. The interval size Dk must be su� ciently small that the vertex
matrices do not vary appreciably when k scans this range of values. Then the k
averaging can be performed with the vertex scattering matrices replaced by their

value at k0. When the vertex scattering matrices are derived from Neumann or

Dirichlet boundary conditions, the averaging interval is unrestricted because the

dimension of SB is independent of k. In any case, Dk must be much larger than
the correlation length between the matrices SB…k†, which was estimated by Kottos
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and Smilansky (1999) to be inversely proportional to the width of the distribution of

the bond lengths. The ensemble average with respect to k will be denoted by

h¢ik ² 1

Dk

…k0‡Dk=2

k0¡Dk=2

¢ dk: …21†

Another way to generate an ensemble of matrices SB is to randomize the length

matrix L or the magnetic vector potentials A…i; j†, while the connectivity (topology of

the graph) is kept constant. In most cases, the ensembles generated in this way will be

equivalent. In the last section we shall also consider an additional average over the

vertex scattering matrices.
In } 3.1 we compare statistical properties of the eigenphases f³l…k†g of SB with

the predictions of RMT (Brody et al. 1981, Mehta 1990) and with the results of PO

theory for the spectral ¯ uctuations of quantized maps (BluÈ mel and Smilansky 1988,

1990). The statistical measure that we shall investigate is the spectral form factor.

Explicit expressions for this quantity are given by RMT (Haake et al. 1996), and a

semiclassical discussion can be found in the papers by Bogomolny and Keating

(1996) and Smilansky (1997a,b).

3.1. The form factor

The matrix SB for a ® xed value of k is a unitary matrix with eigenvalues
exp ‰i³l…k†Š. The spectral density of the eigenphases is

d…³; k† ²
X2B

lˆ1

¯‰³ ¡ ³l…k†Š

ˆ 2B
2p

‡ 1

2p

X1

nˆ1

exp …¡i³n† Tr ‰Sn
B…k†Š ‡ cc; …22†

where the ® rst term on the right-hand side is the smooth density ·d ˆ 2B=2p. The

oscillatory part is a Fourier series with the coe� cients Tr ‰Sn
B…k†Š. This set of coe� -

cients will play an important role in the following. Using the de® nitions (6) one can

expand Tr ‰Sn
B…k†Š directly as a sum over n¡POs on the graph:

Tr ‰Sn
B…k†Š ˆ

X

p2Pn

npAr
p exp ‰i…klp ‡ Fp†rŠ exp …i·pr†; …23†

where the sum is over the set Pn of primitive POs whose period np is a divisor of n,

with r ˆ n=np. lp ˆ
P

b2p L b is the length of the PO. Fp ˆ
P

b2p L bAb is the `magnetic
¯ ux’ through the orbit. If all the parameters Ab have the same absolute size A, we can

write Fp ˆ Abp, where bp is the directed length of the orbit. ·p is the phase accumu-

lated from the vertex matrix elements along the orbit, and it is the analogue of the

Maslov index. For the standard vertex matrices (8) ·p=p gives the number of back

scatterings along p. The amplitudes Ap are given by

Ap ˆ
Ynp

jˆ1

j¼…ij †
ij¡1 ;ij‡1

j ² exp

³
¡

®p

2
np

´
; …24†

where ij runs over the vertex indices of the PO, and j is understood mod np. The

Lyapunov exponent ®p was de® ned in equation (18). It should be mentioned that

equation (23) is the building block of the PO expression for the spectral density of
the graph, which can be obtained starting from the secular equation (7). In the
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quantization of classical area-preserving maps, similar expressions appear as the

leading semiclassical approximations. In the present context, equation (23) is an

identity.
The two-point correlations are expressed in terms of the excess probability

density R2…r† of ® nding two phases at a distance r, where r is measured in units

of the mean spacing 2p=2B:

R2…r; k0† ˆ 2

2p

X1

nˆ1

cos

³
2prn
2B

´
1

2B
hjTr Sn

Bj2ik : …25†

The form factor

K
³

n
2B

´
ˆ 1

2B
hjTr Sn

Bj2ik …26†

is the Fourier transform of R2…r; k0†. For a Poisson spectrum, K…n=2B† ˆ 1 for all n.
RMT predicts that K…n=2B† depends on the scaled time n=2B only (Smilansky 1989),

and explicit expressions for the orthogonal and the unitary circular ensembles are

known (Haake et al. 1996).

As was indicated above, if the vertex scattering matrices are chosen by imposing

Dirichlet boundary conditions on the vertices, the classical dynamics are ìntegrable’ .
One expects therefore the spectral statistics to be Poissonian:

K
³

n
2B

´
ˆ 1 for all n 5 1: …27†

For Dirichlet boundary conditions the vertex scattering matrices (8) couple only

time-reversed bonds. SB is reduced to a block diagonal form where each bond and

its time reversed partner are coupled by a 2 £ 2 matrix of the form

S…b†…k; A† ˆ
0 exp ‰i…k ‡ A†L bŠ

exp ‰i…k ¡ A†L bŠ 0

³ ´
: …28†

The spectrum of each block is the pair § exp …ikL b†, with the corresponding sym-
metric and antisymmetric eigenvectors …1=21=2† …1; §1†. As a result, we obtain

K
³

n
2B

´
ˆ 1 ‡ …¡1†n

for all n 5 1: …29†

This deviation from the expected Poissonian result arises because the extra symmetry

reduces the matrix SB further into the symmetric and antisymmetric subspaces. The
spectrum in each of them is Poissonian but, when combined together, the fact that

the eigenvalues in the two spectra diŒer only by a sign leads to the anomaly (29).

Having successfully disposed of the integrable case, we address now the more

general situation. In ® gure 1 we show typical examples of form factors, computed

numerically for a fully connected graph with V ˆ 20. The data for Neumann bound-
ary conditions and A ˆ 0 (® gure 1 (a)) or A 6ˆ 0 (® gure 1 (b)) are reproduced quite

well by the predictions of RMT, which are shown by the smooth lines. For this

purpose, one has to scale the topological time n by the corresponding `Heisenberg

time’ , which is the dimension of the matrix, that is 2B. The deviations from the

smooth curves are not statistical and cannot be ironed out by further averaging.
Rather, they arise because the graph is a dynamical system which cannot be
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described by RMT in all details. To study this point in depth we shall express the
form factor in terms of the PO expression (23).

K
³

n
2B

´
ˆ 1

2B

½
X

p2Pn

npAr
p exp‰i…klp ‡ Abp ‡ p·p†rŠ


2¾

k

ˆ 1

2B

X

p; p 02Pn

npnp 0 Ar
pAr 0

p 0 exp ‰iA…rbp ¡ r 0bp 0 † ‡ ip…r·p ¡ r 0·p 0 †Š

rlpˆr 0 lp 0

: …30†

The k averaging is carried out over such a large interval that the double sum above is

restricted to pairs of POs that have exactly the same length. The fact that we choose

the lengths of the bonds to be rationally independent will enter the considerations

which follow in a crucial way.

The largest deviations between the numerical data and the predictions of RMT
occur for n ˆ 1; 2. For n ˆ 1, one obtains zero instead of the circular orthogonal

ensemble (COE) (CUE) values 1=B (1=2B), simply because the graph has no POs of

period 1. This could be modi® ed by allowing loops, which were excluded here from

the outset. The 2-POs are self-retracing (i.e. invariant under time reversal), and each

has a distinct length. Their contribution is enhanced because back scattering is

favoured when the valency is large. Self-retracing implies also that their contribution

is insensitive to the value of A. The form factor for n ˆ 2 calculated for a fully
connected graph with v ˆ V ¡ 1 is

K
³

n
2B

´
ˆ 2

³
1 ¡ 2

v

´4

; …31†

independent of the value of A. This is diŒerent from the value expected from RMT.

The repetitions of the 2-POs are also the reason for the odd± even staggering which is

seen for low values of ½ ² n=2B. They contribute a term which is approximately

2 exp …¡2V ½† and thus decays faster with the scaled time ½ when the graph increases.

The deviations between the predictions of RMT and PO theory for low values
of ½ are typical and express the fact that for deterministic systems in general, the
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Figure 1. Form factor for a fully connected graph (a) with V ˆ 20 with and (b) without time-
reversal symmetry. The smooth curves show the predictions of the corresponding
random matrix ensembles COE and CUE respectively.



short-time dynamics are not fully chaotic. The short-time domain becomes less

prominent as B becomes larger because the time n has to be scaled by 2B. This

limit is the analogue of the limit ! 0 in a general quantum system.
Consider now the domain 2 < n ½ 2B. The POs are mostly of the irreducible

type, and the length restriction limits the sum to pairs of orbits that are conjugate

under time reversal. Neglecting the contributions from repetitions and from self-

retracing orbits we obtain

K
³

n
2B

´
º

1

2B

X

p2Pn

n2A2
p 4 cos2 …Abp†

ˆ 2n
2B

unhcos2 …Abp†in: …32†

The classical return probability un approaches unity as n increases (see equation

(19)). Neglecting the short-time deviations, we can replace un by one, and we see
that the remaining expression is the classical expectation of cos2 …Abp† over POs of

length n. For A ˆ 0 this factor is identically unity and one obtains the leading term

of the COE expression for n ½ 2B. If A is su� ciently large hcos2 …Abp†in º 1
2
, one

obtains the short-time limit of the CUE result. The transition between the two

extreme situations is well described by

hcos2 …Abp†in º 1
2

µ
exp

³
¡ A2hL 2

bi
n
2

´
‡ 1

¶
: …33†

This formula is derived by assuming that the total directed length bp of a PO is a sum

of elementary lengths with random signs.

The basic approximation so far was to neglect the interference between contribu-

tions of POs with diŒerent codes (up to time reversal). This can be justi® ed as long as
POs with diŒerent codes have diŒerent lengths. This is the case for low values of n.

As n approaches B, the degeneracy of the length spectrum increases, and for n > 2B
all the orbits are degenerate. In other words, the restriction rlp ˆ r 0lp 0 in equation

(30) does not pick up a unique orbit and its time reversed partner, but rather a group

of isometric but distinct orbits. Therefore, the interference of the contributions from

these orbits must be calculated. The relative sign of the terms is determined by the
`Maslov’ index. The computation of the interfering contributions from diŒerent POs

with neighbouring actions is an endemic problem in the semiclassical theory of

spectral statistics. These contributions are referred to as the non-diagonal terms,

and they are treated by invoking the concept of PO correlations (Argaman et al.

1993, Cohen et al. 1998). The dynamic origin of these correlations is not known. In
the case of graphs, they appear as correlations of the `Maslov’ signs within a class of

isometric n-POs.

To compute K…n=2B† from equation (30), one has to sum the contributions of all

the n-POs after grouping together those that have exactly the same lengths. We shall

discuss the case A ˆ 0; so a further restriction on the orbits to have the same directed
length is not required here. Since the lengths of the individual bonds are assumed to

be rationally independent, a group of isometric n-POs is identi® ed by the non-nega-

tive integers qi, i ˆ 1; . . . ; B, such that

lq ²
XB

iˆ1

qili with
XB

iˆ1

qi ˆ n; …34†
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that is, each bond i is traversed qi times. The orbits in the group diŒer only in the

order by which the bonds are traversed. We shall denote the number of isometric POs

by Dn…q†. Note that not all the integer vectors q which satisfy equation (34) corre-
spond to POs. Rather, the connectivity required by the concept of an orbit imposes

restrictions, which render the problem of computing Dn…q† a very hard combinator-

ial problem (U. Gavish 1998, private communication). Writing equation (30) expli-

citly for the case of a fully connected graph with Neumann vertex scattering

matrices, we obtain

K
³

n
2B

´
ˆ 1

2B

³
2

v

´2n X

q


XDn…q†

¬ˆ1

n
r¬

…¡¹†·¬


2

; with ¹ ²
³

v ¡ 2

2

´
; …35†

and the ¬ summation extends over the n-POs in the class q. ·¬ is the number of back

scatterings along the orbit, and r¬ is diŒerent from unity if the orbit is a repetition of

a shorter primitive orbit of period n=r¬.

Equation (35) is the starting point of the new approach to spectral statistics,

which we would like to develop in the present paper. The actual computation of

equation (35) can be considered as a combinatorial problem, since it involves the
counting of loops on a graph, and adding them with appropriate (signed) weights.

For Neumann boundary conditions, the weights are entirely determined by the

connectivity of the graph. Our numerical data convincingly show that in the limit

of large B the form factors for su� ciently connected graphs reproduce the results of

RMT. The question is whether this relation can be derived using asymptotic combi-
natorial theory. The answer is not yet known, but we would like to show in the next

section that, for a very simple graph, one can use combinatorics to evaluate the PO

sums and recover in this way the exact values of the form factor.

} 4. THE 2-STAR MODEL
In this section we shall investigate classical and quantum dynamics in a very

simple graph using two diŒerent methods. We shall use PO theory to reduce the

computation of the trace of the classical evolution operator un and the spectral form

factor K…n=2B† to combinatorial problems, namely sums over products of binomial
coe� cients. The result will be compared with a straightforward computation starting

from the eigenvalues of the classical and quantum scattering maps.

An n-star graph consists of a `central’ vertex (with vertex index o) out of which

emerge n bonds, all terminating at vertices (with indices j ˆ 1; . . . ; n) with valencies

vj ˆ 1. The bond lengths are L oj ² L j. This simple model (sometimes called a hydra)
was studied at some length in Kottos and Smilansky (1999) and Berkolaiko and

Keating (1999). The star with n ˆ 2 is not completely trivial if the central vertex

scattering matrix is chosen as

r…o†…²† ˆ
³

cos ² i sin ²

i sin ² cos ²

´
…36†

where the value 0 4 ² 4 p=2 is still to be ® xed. The scattering matrices at the two

other vertices are taken to be unity and correspond to Neumann boundary condi-

tions. The dimensions of U and SB are 4, but can be immediately reduced to 2; owing

to the trivial scattering at the re¯ ecting tips, ajo ˆ aoj ² aj for j ˆ 1; 2. In this repre-

sentation the space is labelled by the indices of the two loops (of lengths 2L 1 and 2L 2

respectively) which start and end at the central vertex. After this simpli® cation the
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matrix SB is

SB…k; ²† ˆ
³

exp …2ikL 1† 0

0 exp …2ikL 2†

´³
cos ² i sin ²

i sin ² cos ²

´
: …37†

We shall compute the form factor for two ensembles. The ® rst is de® ned by a ® xed

value of ² ˆ p=4, and the average is over an in® nitely large k range. The second

ensemble includes an additional averaging over the parameter ². We shall show that

the measure for the integration over ² can be chosen such that the model yields the

CUE form factor. This is surprising at ® rst sight, since the model de® ned above is

clearly time-reversal invariant. However, if we replace kL 1 and kL 2 in equation (37)
by L …k § A†, equation (37) will allow for an interpretation as the quantum scattering

map of a graph with a single loop of length L and a vector potential A, that is of a

system with broken time-reversal invariance (see ® gure 2 below). In particular, the

form factors of the two systems will coincide exactly, when an ensemble average over

L is performed. Clearly, this is a very special feature of the model considered, and we
shall not discuss it here in more detail.

4.1. Periodic orbit representation of un

The classical evolution operator corresponding to equation (37) is

U…²† ˆ cos2 ² sin2 ²

sin2 ² cos2 ²

Á !

: …38†

The spectrum of U consists of f1; cos …2²†g, such that

un…²† ˆ 1 ‡ cosn …2²†: …39†

We shall now show how this result can be obtained from a sum over the POs of the

system, grouped into classes of isometric orbits. This grouping is not really necessary
for a classical calculation, but we would like to stress the analogy to the quantum

case considered below.

The POs are uniquely encoded by the loop indices, such that each n-tuple of two

symbols 1 and 2 corresponds (up to a cyclic permutation) to a single PO. When n is

prime, the number of diŒerent POs is N2…n† ˆ 2 ‡ …2n ¡ 2†=n otherwise there are

small corrections due to the repetitions of shorter orbits. These corrections are the

reason why it is more convenient to represent a sum over POs of length n as a sum
over all possible code words, although some of these code words are related by a

cyclic permutation and consequently denote the same orbit. If we do so and more-

over replace the stability factor of each orbit by equation (18), the PO expansion of

the classical return probability becomes

un ˆ
X

i1ˆ1;2

¢ ¢ ¢
X

inˆ1;2

Yn

jˆ1

Pij!ij‡1
; …40†

where j is a cyclic variable such that in‡1 ² i1. In fact, equation (40) can be obtained
without any reference to POs if one expands the intermediate matrix products con-

tained in un ˆ Tr Un and uses Pij!ij‡1
ˆ Uij ;ij‡1

…²†.
We shall now order the terms in the multiple sum above according to the classes

of isometric orbits. In the present case a class is completely speci® ed by the integer

q ² q1 which counts the traversals of the loop 1, that is the number of symbols 1 in
the code word. Each of the q symbols 1 in the code is followed by an uninterrupted
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sequence of tj 5 0 symbols 2 with the restriction that the total number of symbols 2

is given by
Xq

jˆ1

tj ˆ n ¡ q: …41†

We conclude that each code word in a class 0 < q < n which starts with a symbol

i1 ˆ 1 corresponds to an ordered partition of the number n ¡ q into q non-negative

integers, while the words starting with i1 ˆ 2 can be viewed as partition of q into

n ¡ q summands.

To make this step very clear, consider the following example: all code words of

length n ˆ 5 in the class q ˆ 2 are 11222, 12122, 12212, 12221 and 22211, 22121,

21221, 22112, 21212, 21122. The ® rst four words correspond to the partitions

0 ‡ 3 ˆ 1 ‡ 2 ˆ 2 ‡ 1 ˆ 3 ‡ 0 of n ¡ q ˆ 3 into q ˆ 2 terms, while the remaining
® ve words correspond to 2 ˆ 0 ‡ 0 ‡ 2 ˆ 0 ‡ 1 ‡ 1 ˆ 1 ‡ 0 ‡ 1 ˆ 0 ‡ 2 ‡ 0 ˆ
1 ‡ 1 ‡ 0 ˆ 2 ‡ 0 ‡ 0.

In the multiple products in equation (40), a forward scattering along the orbit is

expressed by two diŒerent consecutive symbols ij 6ˆ ij‡1 in the code and leads to a

factor sin2 ², while a back scattering contributes a factor cos2 ². Since the sum is
over POs, the number of forward scatterings is always even and we denote it by 2¸. It

is then easy to see that ¸ corresponds to the number of positive terms in the parti-

tions introduced above, since each such term corresponds to an uninterrupted sequence

of symbols 2 enclosed between two symbols 1 or vice versa and thus contributes two

forward scatterings. For the codes starting with a symbol 1 there are q
¸

¡ ¢
ways to choose

the ¸ positive terms in the sum of q terms, and there are n¡q¡1
¸¡1

¡ ¢
ways to decompose

n ¡ q into ¸ positive summands. After similar reasoning for the codes starting with

the symbol 2 we ® nd for the PO expansion of the classical return probability

un…²† ˆ 2 cos2n ² ‡
Xn¡1

qˆ1

X

¸

µ³
q
¸

³́
n ¡ q ¡ 1

¸ ¡ 1

´
‡

³
n ¡ q

¸

³́
q ¡ 1

¸ ¡ 1

¶́
sin4¸ ² cos2n¡4¸ ²

ˆ 2 cos2n ² ‡
Xn¡1

qˆ1

X

¸

n
¸

³
q ¡ 1

¸ ¡ 1

´³
n ¡ q ¡ 1

¸ ¡ 1

´
sin4¸ ² cos2n¡4¸ ²

ˆ 2
X

¸

³
n
2¸

´
sin4¸ ² cos2n¡4¸ ²

ˆ …cos2 ² ‡ sin2 ²†n ‡ …cos2 ² ¡ sin2 ²†n
; …42†

which is obviously equivalent to equation (39). The summation limits for the variable

¸ are implicit since all terms outside vanish owing to the properties of the binomial

coe� cients. In order to reach the third line we have used the identity

Xn¡1

qˆ1

q ¡ 1

¸ ¡ 1

³ ´
n ¡ q ¡ 1

¸ ¡ 1

³ ´
ˆ n ¡ 1

2¸ ¡ 1

³ ´
ˆ 2¸

n

³
n
2¸

´
: …43†

It can be derived by some straightforward variable substitutions from

Xn¡m

kˆl

k
l

³ ´
n ¡ k

m

³ ´
ˆ n ‡ 1

l ‡ m ‡ 1

³ ´
: …44†

which, in turn, is found in the literature (Prudnikov et al. 1986).

Spectral statistics for quantum graphs 2013



4.2. Quantum mechanics: spacing distribution and form factor

Starting from equation (37), and writing the eigenvalues as exp ‰ik…L 1 ‡ L 2†Š
exp …§i¶=2†, we obtain for ¶; the diŒerence between the eigenphases:

¶ ˆ 2 arcos fcos ² cos ‰k…L 1 ¡ L 2†Šg: …45†

For ® xed ², the k-averaged spacing distribution (which is essentially equivalent to

R2…r† for the considered model) is given by

P…³; ²† ˆ 1

Dk

…k0‡Dk=2

k0¡Dk=2

dk ¯k …³ ¡ 2 arcos fcos ² cos ‰k…L 1 ¡ L 2†Šg†

ˆ
0; cos

³

2

³ ´
> j cos ²j;

sin …³=2†
‰cos2 ² ¡ cos2 …³=2†Š1=2

; cos
³

2

³ ´
< j cos ²j:

8
>>><

>>>:
…46†

We have assumed that ³ is the smaller of the intervals between the two eigenphases,

that is 0 4 ³ 4 p.
The spacings are excluded from a domain centred about 0 …p†, that is they show

very strong level repulsion. The distribution is square-root singular at the limits of

the allowed domain.

P…³; ²† can be written as

P…³; ²† ˆ 1

2p
‡ 1

p

X1

nˆ1

cos …n³†f1
2
hjTr ‰SB…²†nŠj2ik ¡ 1g; …47†

and, by a Fourier transformation, we can compute the form factor

K2…n; ²† ˆ 1
2
hjTr ‰SB…²†nŠj2i: …48†

In particular, for ² ˆ p=4, one ® nds that

K2

³
n;

p
4

´
ˆ 1 ‡ …¡1†m‡n

22m‡1

³
2m
m

´
…49†

º 1 ‡ …¡1†m‡n

2…pn†1=2
: …50†

Where m ˆ ‰n=2Š and ‰¢Š stands for the integer part. The slow convergence of K2…n; p=4†
to the asymptotic value of one is a consequence of the singularity of P…³; p=4†.

We now consider the ensemble for which the parameter ² is distributed with the

measure d·…²† ˆ j cos ² sin ²j d². The only reason for the choice of this measure is
that, upon integrating equation (47), one obtains

P…³† ˆ 2 sin2 ³

2

³ ´
; …51†

which coincides with the CUE result for 2 £ 2 matrices. A Fourier transformation

results in

K2…n† ˆ
1
2

for n ˆ 1;

1 for n 5 2:

»
…52†

The form factors (49), (50) and (52) are displayed in ® gure 2 below.
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4.3. Periodic orbit expansion of the form factor

As pointed out at the end of } 3.1, the k-averaged form factor can be expressed as

a sum over classes of isometric periodic orbits. The analogue of equation (35) for the
2-star is

K2…n; ²† ˆ 1
2

Xn

qˆ0


XDn…q†

¬ˆ1

n
r¬

i2¸¬ sin2¸¬ ² cosn¡2¸¬ ²


2

; …53†

where the number of forward and backward scatterings along the orbits are 2¸¬ and

·¬ ˆ n ¡ 2¸¬, respectively. Again, it is very inconvenient to work with the repetition

number r¬, and consequently we replace (as in the derivation of equation (42)) the
sum over orbits by a sum over all code words and use the analogy with the composi-

tions of integer numbers to obtain

K2…n; ²† ˆ cos2n ² ‡ n2

2

Xn¡1

qˆ1

µ X

¸

…¡1†¸

¸

q ¡ 1

¸ ¡ 1

³ ´
n ¡ q ¡ 1

¸ ¡ 1

³ ´
sin2¸ ² cosn¡2¸ ²

¶2

:

…54†

The inner sum over ¸ can be written in terms of Krawtchouk polynomials as

K2…n; ²† ˆ cos2n ² ‡ 1
2

Xn¡1

qˆ1

n ¡ 1

n ¡ q

³ ´
cos2q ² sin2…n¡q† ²

µ
n
q

P…cos2 ²;sin2 ²†
n¡1;n¡q …q†

¶2

; …55†

and the Krawtchouk polynomials are de® ned as (SzegoÈ 1959, Nikiforov et al. 1991)

P…u;v†
N;k …x† ˆ N

k

³ ´
…uv†k

µ ¶¡1=2Xk

¸ˆ0

…¡1†k¡¸

³
x
¸

´
N ¡ x
k ¡ ¸

³ ´
uk¡¸v¸;

0 4 k 4 N; u ‡ v ˆ 1: …56†

These functions form a complete system of orthogonal polynomials of integer x with

0 4 x 4 N. They have quite diverse applications ranging from the theory of covering
codes (Cohen et al. 1997) to the statistical mechanics of polymers (Schulten et al.

1980) and have been studied extensively in the mathematical literature (SzegoÈ 1959,

Nikiforov et al. 1991). The same functions appear also as a building block in our PO

theory of Anderson localization on graphs (Schanz and Smilansky 2000).

Unfortunately, we were not able to reduce the above expression any further by
using the known sum rules and asymptotic representations for Krawtchouk poly-

nomials. The main obstacle stems from the fact that in our case the three numbers

N; k and x in the de® nition (56) are constrained by N ˆ k ‡ x ¡ 1.

We shall now consider the special case ² ˆ p=4 for which we obtained in } 4.2 the

solution (49). The result can be expressed in terms of Krawtchouk polynomials with

u ˆ v ˆ 1
2
, which is also the most important case for the applications mentioned

above. We adopt the common practice of omitting the superscript …u; v† in this

special case and ® nd that

K2

³
n;

p
4

´
ˆ 1

2n ‡ 1

2n‡1

Xn¡1

qˆ1

³
n ¡ 1

n ¡ q

´µ
n
q

Pn¡1;n¡q…q†
¶2

: …57†
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It is convenient to introduce

N …s; t† ˆ …¡1†s‡t
³

s ‡ t ¡ 1

s

´1=2

Ps‡t¡1;s…t†

ˆ
X

¸

…¡1†t¡¸

³
t
¸

´³
s ¡ 1

¸ ¡ 1

´
…58†

and to rewrite equation (57) with the help of some standard transformations of

binomial coe� cients:

K2

³
n;

p
4

´
ˆ

1

2n ‡
1

2n‡1

Xn¡1

qˆ1

³
n
q

N …q; n ¡ q ¡ 1†
´2

ˆ 1

2n ‡ 1

2n‡1

Xn¡1

qˆ1

‰N …q; n ¡ q† ‡ …¡1†nN …n ¡ q; q†Š2: …59†

This expression is displayed in ® gure 2 together with equation (49) in order to

illustrate the equivalence of the two results. An independent proof for this equiva-

lence can be given by comparing the generating functions of K2…n; p=4† in the two
representations.{ We defer this to appendix A.

It should be noted, that in this way we have found a proof for two identities

involving the Krawtchouk polynomials

2016 H. Schanz and U. Smilansky

{ This idea was suggested by G. Berkolaiko.

Figure 2. Form factor for the 2-star quantum graph. The crosses and the connecting heavy
full line show the two equivalent exact results (49) and (57) for ² ˆ p=4. The broken
lines represent the approximation (50), and the thin straight line corresponds to the
diagonal approximation, when repetitions of primitive PO are neglected. The heavy
broken line exhibits the form factor of a CUE ensemble of 2 £ 2 random matrices (52),
which can be obtained from the 2-star by an appropriate averaging over ². Finally, the
inset shows a sketch of the two possible realizations of the system: a time-reversal
invariant 2-star with bond lengths L1 and L2 or a graph with a single loop of length L
and a magnetic ¯ ux A breaking time-reversal symmetry.



X2m¡1

qˆ1

2m ¡ 1

2m ¡ q

³ ´
2m
q

P2m¡1;2m¡q…q†
³ ´2

ˆ 22m‡1 ‡ …¡1†m 2m
m

³ ´
¡ 2 …60†

and

X2m

qˆ1

2m
2m ‡ 1 ¡ q

³ ´
2m ‡ 1

q
P2m;2m‡1¡q…q†

³ ´2

ˆ 22m‡2 ¡ 2…¡1†m 2m
m

³ ´
¡ 2; …61†

which were obtained by separating even and odd powers of n in equations (49) and

(57). To the best of our knowledge, equations (60) and (61) were derived here for the

® rst time.

Finally we shall derive the CUE result (52) for the ensemble of graphs de® ned in

the } 4 starting from the PO expansion (54). We ® nd that

K2…n† ˆ
…p=2

0

d·…²† K2…n; ²†: …62†

Inserting equation (54), expanding into a double sum and using

…p=2

0

d² sin2…¸‡¸ 0†‡1 ² cos2…n¡¸¡¸ 0†‡1 ² ˆ 1

2…n ‡ 1†
n

¸ ‡ ¸ 0

³ ´¡1

; …63†

we obtain

K2…n† ˆ 1

n ‡ 1

‡ n2

4…n ‡ 1†
Xn¡1

qˆ1

X

¸;¸ 0

…¡1†¸‡¸ 0

¸¸ 0
n

¸ ‡ ¸ 0

³ ´¡1 q ¡ 1

¸ ¡ 1

³ ´
n ¡ q ¡ 1

¸ ¡ 1

³ ´

£ q ¡ 1

¸ 0 ¡ 1

³ ´
n ¡ q ¡ 1

¸ 0 ¡ 1

³ ´
: …64†

Comparing this with the equivalent result (52), we were again led to a previously

unknown identity involving a multiple sum over binomial coe� cients. It can be

expressed as

S…n; q† ˆ
X

¸;¸ 0

F¸;¸ 0…n; q† ˆ 1 …1 4 q < n†; …65†

with

F¸;¸ 0 …n; q† ˆ
…n ¡ 1†n

2

…¡1†¸‡¸ 0

¸¸ 0
n

¸ ‡ ¸ 0

³ ´¡1 q ¡ 1

¸ ¡ 1

³ ´
q ¡ 1

¸ 0 ¡ 1

³ ´

£ n ¡ q ¡ 1

¸ ¡ 1

³ ´
n ¡ q ¡ 1

¸ 0 ¡ 1

³ ´
: …66†

In this case, an independent computer-generated proof was found (A. Tefera 1999,

private communication), which is based on the recursion relation

q2F¸;¸ 0…n; q† ¡ …n ¡ q ¡ 1†2F¸;¸ 0 …n; q ‡ 1† ‡ …n ¡ 1†…n ¡ 2q ¡ 1†F¸;¸ 0 …n ‡ 1; q ‡ 1† ˆ 0:

…67†

This recursion relation was obtained with the help of a Mathematica routine
(Wegschaider 1997), but it can be checked manually in a straightforward calculation.
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By summing equation (67) over the indices ¸; ¸ 0, the same recursion relation is shown

to be valid for S…n; q† (PetkovsÏ ek et al. 1996, Wegschaider 1997) and the proof is

completed by demonstrating the validity of equation (65) for a few initial values.
Having proven equation (65), we can use it to perform the summation over ¸; ¸ 0 in

equation (64) and ® nd

K2…n† ˆ 1

n ‡ 1
‡

Xn¡1

qˆ1

n
n2 ¡ 1

ˆ 1

n ‡ 1
‡ n

n ‡ 1
…1 ¡ ¯n;1†; …68†

which is now obviously equivalent to the random matrix form factor (52). To the
best of our knowledge, this is the ® rst instance in which a combinatorial approach to

RMT is employed.

} 5. CONCLUSIONS
We have shown how within PO theory the problem of ® nding the form factor

(the spectral two-point correlation function) for a quantum graph can be exactly

reduced to a well de® ned combinatorial problem. For this purpose it was necessary

to go beyond the diagonal approximation and to take into account the correlations
between the POs.

In our model, these correlations are restricted to groups of isometric POs. This

® ts very well the results of Cohen et al. (1998), where for a completely diŒerent

system (the Sinai billiard), the classical correlations between POs were analysed

and found to be restricted to relatively small groups of orbits. The code words of
the orbits belonging to one group were conjectured to be related by a permutation

and a symmetry operation, which is in complete analogy to the isometric orbits on

graphs.

Even for the very small and simple graph model that we considered in the last

section the combinatorial problems involved were highly non-trivial. In fact we
encountered previously unknown identities which we could not have obtained if it

were not for the second independent method of computing the form factor.

However, since the pioneering work documented by PetkovsÏ ek et al. (1996), inves-

tigation of sums of the type that we encountered in this paper is a rapidly developing

subject, and it can be expected that ® nding identities such as equations (60), (61) and

(65) will shortly be a matter of computer power.
The universality of the correlations between POs in all chaotic systems poses the

problem of identifying the common dynamic reasons for their occurrence and of

® nding a common mathematical structure which is capable of describing them. A

very interesting question in this respect is whether the correlations between POs in a

general chaotic system can be related to combinatorial problems.
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A P P E N D I X A

PROOF OF EQUIVALENCE OF EQUATIONS (49) AND (59)

In this appendix we give an independent proof of the equivalence between the

two results (49) and (50) obtained in } } 4.2 and 4.3 respectively, for the form factor
of the 2-star with ² ˆ p=4. We de® ne the generating function

G…x† ˆ
X1

xˆ1

K2

³
n;

p
4

´
…2x†n …jxj < 1

2
† …A 1†

and ® nd from equation (49) that

G…x† ˆ 2x
1 ¡ 2x

¡ 1

2
‡

X1

mˆ0

…¡1†m

2

2m
m

³ ´
x2m…1 ¡ 2x†

ˆ 1

2

1 ¡ 2x

…1 ‡ 4x2†1=2
¡ 1

2

1 ¡ 6x
1 ¡ 2x

: …A 2†

On the other hand we have from equation (59)

G…x† ˆ x
1 ¡ x

‡ G1…x† ‡ G2…¡x† …A 3†
with

G1…x† ˆ
X1

s;tˆ1

N 2…s; t† xs‡t …A 4†

and

G2…x† ˆ
X1

s;tˆ1

N …s; t†N …t; s†xs‡t: …A 5†

A convenient starting point for obtaining G1 and G2 is the integral representation

N …s; t† ˆ ¡ …¡1†t

2pi

‡
dz …1 ‡ z¡1†t…1 ¡ z†s¡1; …A 6†

where the contour encircles the origin. With the help of equation (A 6) we ® nd that

g…x; y† ˆ
X1

s;tˆ1

N …s; t† xs yt

ˆ ¡
1

2pi

X1

s;tˆ1

‡
dz

X1

s;tˆ1

…1 ‡ z¡1†t…1 ¡ z†s¡1 xs …¡y†t

ˆ xy
2pi

X1

s;tˆ0

‡
dz

1

1 ¡ x…1 ¡ z†
1 ‡ z

z ‡ y…1 ‡ z†

ˆ xy
…1 ‡ y†…1 ¡ x ‡ y ¡ 2xy†

jxj; j yj <
1

21=2

³ ´
: …A 7†
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The contour j1 ‡ z¡1j ˆ j1 ¡ zj ˆ 21=2 has been chosen such that both geometric

series converge everywhere on it. Now we have

G1…x2† ˆ
1

…2pi†2

‡
dz dz 0

zz 0

X1

s;tˆ1

X1

s 0 ;t 0ˆ1

N …s; t†N …s 0; t 0†…xz†s
³

x
z

´s 0

…x z 0†t
³

x
z 0

´t 0

ˆ x4

…2pi†2

‡
dz dz 0 1

…1 ‡ xz 0†‰1 ‡ x…z 0 ¡ z† ¡ 2x2zz 0Š

£ z 0

…z 0 ‡ x†‰zz 0 ‡ x…z ¡ z 0† ¡ 2x2Š
; …A 8†

where jxj < 1=21=2 and the contour for z; z 0 is the unit circle. We perform the double
integral using the residua inside the contour and obtain

G1…x† ˆ x
2x ¡ 1

1

…4x2 ‡ 1†1=2
¡ 1

1 ¡ x

Á !

: …A 9†

In complete analogy we ® nd that

G2…x† ˆ 1

2

4x2 ‡ 2x ‡ 1

…2x ‡ 1†…4x2 ‡ 1†1=2
¡ 1

2
…A 10†

such that

G…x† ˆ x
1 ¡ x

‡ x
2x ¡ 1

1

…4x2 ‡ 1†1=2
¡ 1

1 ¡ x

Á !
‡ 1

2

4x2 ¡ 2x ‡ 1

…1 ¡ 2x†…4x2 ‡ 1†1=2
¡ 1

2
:

…A 11†

The proof is completed by a straightforward veri® cation of the equivalence between

the functions (A 2) and (A 11).
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