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Classical and Quantum Hamiltonian Ratchets
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We explain the mechanism leading to directed chaotic transport in Hamiltonian systems with spatial
and temporal periodicity. We show that a mixed phase space comprising both regular and chaotic motion
is required and we derive a classical sum rule which allows one to predict the chaotic transport velocity
from properties of regular phase-space components. Transport in quantum Hamiltonian ratchets arises by
the same mechanism as long as uncertainty allows one to resolve the classical phase-space structure. We
derive a quantum sum rule analogous to the classical one, based on the relation between quantum trans-
port and band structure.
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Stimulated by the biological task of explaining the func-
tioning of molecular motors, the study of ratchets [1]
has widened to a general exploration of “self-organized”
transport, i.e., transport without external bias, in nonlin-
ear systems [2]. Along with this process, there has been a
tendency to reduce the models under investigation from
realistic biophysical machinery to the minimalist systems
customary in nonlinear dynamics. External noise, for ex-
ample, which originally served to account for the fluctu-
ating environment of molecular motors, has been replaced
by deterministic chaos. This required one to include inertia
terms in the equations of motion, thus leaving the regime of
overdamped dynamics and leading to deterministic inertia
ratchets with dissipation [3,4]. It is then a consequent but
radical step to abandon friction altogether. Indeed, trans-
port in Hamiltonian ratchets was observed numerically if
all symmetries were broken that generate to each trajectory
a countermoving partner [5,6].

As a parallel development, the desire to realize ratchets
in artificial, nanostructured electronic systems requires one
to consider quantum effects [6,7]. Quantum Hamiltonian
ratchets, however, have been studied only in the framework
of one-band systems where no transport occurs [6].

In this paper we explain how a Hamiltonian ratchet
works. We rely on methods which—although well estab-
lished in studies of deterministic dynamics —have never
before been applied to ratchets. We derive a classical and
an analogous quantum sum rule for transport allowing the
following conclusions: (i) Directed transport is a property
associated with individual invariant sets of the dynamics.
A necessary condition for nonzero transport is a mixed
phase space with coexisting regular and chaotic regions.
(ii) Transport in chaotic regions can be described quantita-
tively by using topological and further properties of adja-
cent regular regions only. (iii) Quantum transport persists
for all times and approaches the classical transport when
h̄ is small compared to the major invariant sets of the clas-
sical phase space.
070601-1 0031-9007�01�87(7)�070601(4)$15.00
We consider a Hamiltonian of the form H�x, p, t� �
T �p� 1 V �x, t�, where T �p� is the kinetic en-
ergy. The force 2V 0 is periodic in space and time,
V 0�x 1 1, t� � V 0�x, t 1 1� � V 0�x, t�, and has zero
mean

R1
0 dt

R1
0 dx V 0�x, t� � 0. Usually directed transport

is demonstrated by following selected trajectories over
very long times [5,6] or an ensemble of trajectories which
generates spatial distributions as shown in Figs. 1a and 1c.
While this is easily implemented numerically, it gives no
clue about the origin of the transport (but see Ref. [9]).
Instead, we shall exploit the periodicity of the dynamics
with respect to space and time and analyze transport in
terms of the invariant sets of phase space, reduced to
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FIG. 1. (a) Spatial distribution P�x� of a continuously driven
system [8] after 20 000 time periods showing the directed trans-
port in a Hamiltonian ratchet. Initially, 104 trajectories were
started at random on the line p � 0, x [ �0, 1� in the chaotic
sea. (b) Poincaré section p vs x of a unit cell at integer times
showing the main chaotic sea, the upper and lower limiting
KAM-tori, and the major embedded regular islands. (c),(d) As
(a),(b), but for the kicked Hamiltonian (4) showing a much more
pronounced directed transport.
© 2001 The American Physical Society 070601-1



VOLUME 87, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 13 AUGUST 2001
the spatiotemporal unit cell x, t [ �0, 1�. For any finite
invariant set M we define ballistic transport as phase-space
volume times average velocity expressed as

tM �
Z 1

0
dt

Z 1

0
dx

Z 1`

2`

dp xM�x, p, t�
≠H
≠p

, (1)

where xM is the characteristic function of M. Transport is
additive for the union of two or more disjunct invariant sets,
i.e., for M �

S
i Mi, with Mi > Mj � [ for all i fi j,

we have

tM �
X

i

tMi . (2)

This sum rule for Hamiltonian transport has far-reaching
consequences to be discussed in the following.

For a generic Hamiltonian system, phase space is mixed
and comprises an infinite number of minimal invariant sets
of different types. For the sake of definiteness we will re-
strict the following discussion to the most interesting case
of a chaotic region containing embedded regular islands
(Fig. 1b). In any of these invariant sets the time-averaged
velocity yi is the same for almost all initial conditions (as-
suming ergodicity for chaotic components). Hence, for a
chaotic region, tch � Achych with Ach denoting its area
in a stroboscopic Poincaré section. For an embedded is-
land we have ti � Aiyi where Ai includes the areas of the
narrow chaotic layers inside the island and of the infinite
hierarchy of island chains surrounding it because all these
invariant sets share the same mean velocity. This velocity
yi is identical to the rational winding number wi � xi�ti

of the stable fixed point at the center of the island. In ex-
tended phase space, this corresponds to a shift of the island
by xi spatial after ti time periods. Typically, the chaotic set
is bounded from above and below by two noncontractible
KAM-tori pa,b�x, t� enclosing the spatial unit cell. Treat-
ing the phase-space region in between as the global in-
variant set M appearing on the left-hand side of Eq. (2),
its transport tM is obtained from Eq. (1) as �T�a 2 �T�b

with �T�a,b �
R1

0 dt
R1

0 dx T�pa,b�x, t�� denoting averages
of the kinetic energy over the tori. Using the sum rule
(2) we can now express transport of the chaotic region in
terms of its adjoining regular components (KAM-tori and
islands) as

Achych � �T�a 2 �T�b 2
X

i

Aiwi . (3)

This is our main result on classical transport in Hamilton-
ian ratchets. Not only does Eq. (3) provide an efficient
method to determine the chaotic drift velocity, it also ex-
presses the simple principle generating directed ballistic
motion: Decomposing phase space into different invariant
sets, these will in general have average velocities different
from each other and also different from zero but related by
the sum rule (2). Therefore a necessary condition for di-
rected chaotic transport in Hamiltonian ratchets is a mixed
phase space.
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Lévy flights [10] are a characteristic feature of chaotic
motion in a generic mixed phase space and indeed they
were observed in Hamiltonian ratchets [5,6]. They reflect
the slow exchange between subsets of a chaotic region,
separated by leaky barriers [10]. As these subsets are not
invariant, their contributions to Eq. (2) are contained in the
contribution of the chaotic invariant set. Lévy flights lead
to power-law tails in spatial distributions. For example,
the asymmetric shapes of the peaks visible in Figs. 1a and
1c can be attributed to these tails. Notably, in Fig. 1c one
clearly sees a mean transport to the right although the same
data show no indication of a power-law tail in this direc-
tion. We stress that the sum rule allows one to predict the
mean velocity of chaotic trajectories without any reference
to such details of the chaotic dynamics. This suggests that
Lévy flights are not a necessary element of the mechanism
of chaotic transport in Hamiltonian ratchets.

In Ref. [5] it was shown that a necessary condition for
directed transport is the breaking of all symmetries which
to each trajectory generate a countermoving partner. For
a chaotic set invariant under such a symmetry, this is in
agreement with Eq. (3) because then the right-hand side
vanishes identically. However, chaotic sets can also occur
as symmetry-related pairs transporting in opposite direc-
tions. Moreover, if phase space cannot be decomposed
into invariant subsets, e.g., for an ergodic system, there
cannot be transport even with all symmetries broken.

Up to now we have considered only transport of invari-
ant sets of the unit cell. For an arbitrary initial distribution
transport is determined by projection onto these invariant
sets [11]. Therefore, the location of an initial distribu-
tion within an invariant set is irrelevant. This applies also
to the location within the temporal unit cell, i.e., to the
question of phase dependence discussed in [12]. In par-
ticular, in case that the plane p � 0, 0 # x, t # 1 is com-
pletely within the chaotic invariant set, any initial condition
restricted to this plane will result in the same average trans-
port. We now understand how a Hamiltonian ratchet makes
particles initially at rest �p � 0� move with a predeter-
mined mean velocity as, e.g., in Fig. 1a.

We have checked Eq. (3) numerically for a continuously
driven system [8]. We determined the areas Ai and winding
numbers wi for the regular islands shown in the Poincaré
section of Fig. 1b as well as �Ta� and �Tb� for the limiting
KAM-tori, yielding ych � 0.092 6 0.011. The error esti-
mate includes the uncertainty in the location of the bound-
ing KAM-tori and the contribution from neglected small
islands. The result is in agreement with the value ych �
0.082 6 0.002 determined with much more computational
effort from the spatial distribution of 104 trajectories,
started with p � 0 (Fig. 1a).

As a minimal model for directed chaotic transport in
Hamiltonian ratchets, we propose a kicked Hamiltonian

H�x, p, t� � T�p� 1 V �x�
X
n

d�t 2 n� . (4)
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It reduces the dynamics to a map for position and mo-
mentum xn11 � xn 1 T 0�pn�, pn11 � pn 2 V 0�xn11�,
just after the kick. As an example we take a symmetric
potential V �x� � �x mod1 2 1�2�2�2 and an asymmetric
kinetic energy T�p� � jpj 1 3 sin�2pp���4p2�. We
consider the dynamics on a cylinder with transport along
the x axis and p [ �21�2, 11�2� being a periodic vari-
able. Figure 1d shows the Poincaré section for one unit
cell. There are only two major invariant sets — a chaotic
sea and a regular island centered around a periodic orbit
with winding number wreg � 21. According to Eq. (1),
transport of the full phase space vanishes identically
because of the periodic momentum variable. Applying the
sum rule (2) the contributions to transport from the two
invariant sets cancel exactly,

Achych 1 Aregwreg � 0 . (5)

We find the transport velocity of the chaotic component as
ych � freg��1 2 freg�, where freg � Areg��Areg 1 Ach�
denotes the relative area of the regular island. From
Fig. 1d, freg � 0.117 6 0.001, thus ych � 0.133 6

0.001 in agreement with ych � 0.1344 6 0.0003 from
the spatial distribution of Fig. 1c.

In order to extend our concept of directed transport in
Hamiltonian systems to quantum ratchets, we first demon-
strate by a numerical example that quantum Hamiltonian
ratchets can work. Figure 2 shows that the average veloc-
ity of a wave packet initialized in the chaotic sea varies
between 0 for large and the classical value ych for small
values of h̄. We explain this behavior in the following.

In analogy with our approach to classical transport,
we consider the invariants of the quantum dynamics, the
stationary states of the time-evolution operator over one
period, i.e., Û � e2iV̂�h̄e2iT̂� h̄ for the kicked Hamilton-
ian Eq. (4). They satisfy Ûjfa,k� � exp�22piea�k�� 3

jfa,k�, with the quasienergy ea�k� [ �0, 1� [13]. Simi-
larly, spatial periodicity implies fa,k�x 1 1, t� �
exp�2pik�fa,k�x, t� with quasimomentum k [ �0, 1�
where h is chosen rational for systems periodic in p.
Quantum transport is related to the expectation values in
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FIG. 2. Mean position vs time for a wave packet in system (4)
initialized as the momentum eigenstate with p � 0 for various
values of h (full lines). For decreasing h the classical prediction
ycht (dashed line) is approached.
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the stationary states ya,k � ��fa,kjŷjfa,k�� of the ve-
locity operator ŷ � T̂ 0� p̂�, where ��?�� �

R1
0 dx

R1
0 dt �?�.

Using a generalization of the Hellmann-Feynman theorem
to time-periodic systems [13], we express velocities by
band slopes as

ya,k � dea�k��dk . (6)

This allows one to discuss quantum transport in terms of
spectral properties. Examples for quasienergy band spectra
are shown in Fig. 3 together with the corresponding veloc-
ity distributions. The semiclassical regime is characterized
by the existence of two different types of bands and corre-
sponding eigenstates [14,15]: Bands pertaining to regular
states appear as straight lines in the spectrum, while the
chaotic bands show oscillations and wide avoided cross-
ings among themselves. Associating the terms chaotic and
regular with the bands is supported by the Husimi repre-
sentations of the corresponding eigenfunctions (insets in
Fig. 3a). The new aspect introduced into this picture by
directed chaotic transport is the overall slope of the chaotic
bands.

Only on a coarse quasienergy scale, the two sets of bands
appear to cross. On a sufficiently fine scale, all crossings
are avoided. Consequently the actual bands change their
character between regular and chaotic at each of the narrow
crossings and have no overall slope. Switching from the
latter (“adiabatic”) to the former (“diabatic”) viewpoint is
a well-controlled procedure [14]. Formally, the behavior
of the bands can be described in terms of their winding
number (average slope) with respect to the periodic �e, k�
space: In the adiabatic as well as in the diabatic case,
all quasienergy bands must close after an integer number
of periods in the e and k directions, so that their winding
number w must be rational. Clearly, in the adiabatic case,
all winding numbers are zero. Going from the adiabatic to
the diabatic case amounts to a mere reconnection of bands
at the crossings, preserving the sum of winding numbers.
Thus it must be zero also in the diabatic representation,

FIG. 3. Distribution of quantum velocities y obtained accord-
ing to Eq. (6) for (a) h � 1�128 and (b) h � 1�4. The right
insets show band spectra for h � 1�32 and h � 1�4, respec-
tively. The smaller insets are Husimi representations of charac-
teristic wave functions together with the border of the classical
regular island. In (a) the regular and the chaotic wave functions
can be associated with the two peaks of P�y� centered around
yreg � 21 and ych.
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FIG. 4. Form factor K�x, t� for h � 1�128 (thick line) at
(a) t � 30 and (b) t � 111, the Heisenberg time of the chaotic
component. The two distinct peaks centered around yreg
and ych are the fingerprints of directed transport. The time-
dependent width of the chaotic peak follows the classical
distribution P�ch��x, t� of chaotic trajectories (thin line).

X
a

w �ch�
a 1

X
a

w �reg�
a � 0 . (7)

This is the quantum-mechanical analog of the classical
sum rule (5). Because of the localization of the regular
states on tori inside the regular island, the winding number
of the regular bands in �e, k� space is in the semiclassical
limit identical to the winding number in �x, t� space of the
central periodic orbit, i.e., w �reg�

a
� wreg. Moreover, in this

limit, the fractions of regular and chaotic bands correspond
to the relative phase-space volumes freg and 1 2 freg,
respectively. We therefore obtain from Eq. (7) the mean
slope of the chaotic bands, w �ch� � freg��1 2 freg� �
ych, as the classical drift velocity. This is confirmed in
Fig. 3a.

The asymptotic quantum transport velocity for a given
initial wave packet jc� is an average of band slopes
weighted with the overlaps j�cjfa,k�j2. We can now
explain our observations in Fig. 2: For h̄ ø Areg, an
initial wave packet prepared in the chaotic region of a
single unit cell of the extended system is a superposition
of chaotic eigenfunctions from the entire band spectrum.
Consequently, its drift velocity is given by the mean slope
of the chaotic bands and thus by the classical value ych.
In contrast, for h̄ ¿ Areg, there are no states restricted to
the regular or the chaotic set and hence quantum transport
does not correspond to classical transport in this regime.

Our analysis based on the winding numbers can be ap-
plied to predict the mean quantum transport in the semi-
classical regime from the classical value. The band spectra,
however, encode more detailed information about quantum
transport. It can be extracted by a double Fourier trans-
form e ! t, k ! x (discrete position in units of the spa-
tial period) and subsequent squaring of the spectral density,
translating two-point correlations in the bands into the en-
tire time evolution of the spatial distribution on the scale
of the spatial period. A formal definition of the result-
070601-4
ing generalized form factor K�x, t� and further details are
found in [16]. A semiclassical theory for the form factor in
Hamiltonian ratchets, which will be published elsewhere,
requires one to account for the simultaneous presence of
regular and chaotic regions in phase space. It relates the
form factor K�x, t� to the respective contributions of these
invariant sets to the classical spatiotemporal distribution
P�x, t� (Fig. 4).
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