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Abstract

In this manuscript a number of selected publications concerning the prop-
erties of quantum systems with a chaotic classical analogue are reviewed.
Emphasis is placed on the description of spectrum and eigenstates in the
semiclassical regime and also on transport properties in extended quasi one-
dimensional systems.

Most of the presented results are obtained with the help of minimal mod-
els highlighting by construction certain universal aspects of quantum chaos.
These models include billiards, Hamiltonian maps and quantum graphs, and
they will be briefly introduced in the beginning.

The second part deals with the semiclassical theory of quantum two-point
correlation functions such as the spectral form factor. The main topic is here
the diagonal approximation and methods to improve it by accounting for
action correlations between classical trajectories.

In the third and fourth chapters the localization of quantum eigenfunc-
tions in classical phase space plays an important role. We discuss the effect
of scarring on classical periodic orbits and stress in particular the difference
between strong scarring in individual eigenstates and an enhanced average
localization on the orbit which is, however, distributed over many states. We
also discuss limitations to the applicability of the semiclassical eigenfunction
hypothesis, which predicts that eigenstates are localized on a single invariant
manifold of the classical phase space.

Finally transport properties in extended, periodic systems are addressed.
These include the quantum manifestations of classical diffusion in the statis-
tics of band spectra and the classical and quantum theory of Hamiltonian
ratchets, that is systems in which directed ballistic transport occurs due to
the simultaneous presence of regular and chaotic dynamics.
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Chapter 1

Introduction

1.1 Background and scope

This manuscript contains an introduction to some selected publications of the
author, highlighting their common theme and their interrelations more than a
single paper typically does. We will explore quantum systems with a chaotic
classical limit and address (i) the semiclassical description of correlations in
spectral and dynamical quantities, (ii) the localization of quantum eigen-
states in classical phase space and (iii) transport in quasi one-dimensional
periodic systems and in particular in classical and quantum Hamiltonian
ratchets.

Although these problems are quite diverse, they are all subsumed in the
field of quantum chaos [1]-[9]. Tts scope can be defined by quoting Michael
Berry [10]: “Quantum chaology is the study of semiclassical, but nonclassi-
cal, phenomena characteristic of systems whose classical counterparts exhibit
chaos.”. Curiously the article containing this quotation was called “Quantum
chaology, Not Quantum Chaos”, but nevertheless the latter term remained
a popular synonym for the former. No confusion should occur since chaos in
its literal sense of exponential sensitivity to initial conditions is excluded in
quantum mechanics due to the unitary and linear dynamics and the uncer-
tainty principle.

One might add to the above definition that the phenomena collected and
explained in quantum chaos are universal, i.e., independent of the concrete
physical system as long as it has chaotic dynamics. As examples have served
systems as diverse as nuclei [11]-[16], atoms [17]-[24] including Bose-Einstein



condensates [25], molecules [26], mesoscopic electronic structures [27]-[32],
classical waves in macroscopic confinements (microwave billiards [33]-[39],
microlasers [40]-[42], sound waves [43]-[47]) and even the dynamics of stars
[48] or the universe [49] on cosmological scales. Clearly, the energy and
time scales relevant for these systems could not be more different. However,
according to a hypothesis put forward by Bohigas, Giannoni and Schmit [50],
the local properties of the spectra, on the scale of one or a few mean level
spacings, are universal in the presence of chaos.

What is more, these properties turned out to be the same for chaotic
systems and suitable ensembles of random matrices. Random matrices had
been introduced and studied before by Wigner, Dyson and others in order to
describe the complicated and in detail unknown Hamiltonians of heavy nuclei
[51, 52]. The application of random-matrix theory (RMT) to quantum chaos
proved to be extremely successful. In particular there are very powerful an-
alytical tools that allow to calculate virtually any quantity of interest within
RMT [53]-[58]. The predictions obtained in this way do concern not only
spectral statistics but also eigenstates, quantum dynamics, scattering ampli-
tudes etc. and they did compare favourably with numerical and experimental
data in numerous studies of chaotic systems.

Nevertheless there are important aspects of quantum chaos which cannot
be accounted for by RMT alone because the latter discards any system-
specific information other than basic symmetries. Such information about
the individual chaotic system is retained in the semiclassical quantization by
Gutzwiller’s trace formula [59, 60] and encoded in the classical periodic orbits
(PO’s). As a consequence, these orbits are directly related to many universal
phenomena beyond RMT. For example, the orbit with the shortest period
shows up in the quantum spectral statistics as the maximal energy scale
on which RMT does apply [61]. And scarred eigenstates, differing from the
RMT prediction by an enhanced localization, are concentrated in phase space
around some of the short PO’s (see Chapter 3). So while the set of PO’s is
different for each particular system, the way they show up in the quantized
version is the same. In this sense one can say that both, faithfulness to
RMT predictions and traces left by the individual classical PO’s are universal
aspects of quantum chaos. However, the interrelation between these two
approaches is not yet completely understood. In particular, the question how
random-matrix behaviour emerges from periodic-orbit theory has recently
attracted a lot of attention. Chapter 2 of this work will be related to this
problem. It will become clear that periodic-orbit theory is applicable also in



situations where RMT fails due to specific features of the classical dynamics.
An important example of this type is given by chaotic systems which are
spatially periodic. We will discuss this case in Section 4.1.

Completely chaotic classical systems are as exceptional as completely in-
tegrable ones. Most systems have a mixed phase space with chaotic and
regular dynamics being present simultaneously. In this generic case even the
classical dynamics is far from being well understood. The main problem
are the complex self-similar structures which exist in the phase space of a
mixed system. Typically, an infinite number of smaller and smaller regular
components are embedded in a chaotic background, which by itself is not
homogeneous but contains hierarchies of cantori acting as partial transport
barriers. While the description of these complicated substructures of a mixed
phase space remains a largely unsolved problem, there exist also more tangi-
ble effects that are due to the coexistence of regular and chaotic dynamics.
An interesting and important example is directed chaotic transport in ex-
tended systems with a periodic mixed phase space. We shall elucidate this
novel phenomenon in Section 4.2.

As a first step towards understanding quantum systems with a mixed
classical limit one may ignore the intricate phase-space structures at the
border between regular and chaotic dynamics and make use of the semiclas-
sical eigenfunction hypothesis which is due to Percival [62] and Berry [63].
According to this hypothesis, almost all eigenstates live in the semiclassical
limit on a single invariant set of phase space, e.g., the chaotic sea or a regular
island. Regular and chaotic components of phase space are then effectively
decoupled and can be treated separately. For example, the spectral statistics
is a superposition of the Poissonian distribution which is characteristic for
integrability and the random-matrix prediction for chaos, weighted with the
corresponding phase-space fractions [64]. Although recent results pointed
out deviations from this simple picture at finite & [65]-[67], the semiclas-
sical eigenfunction hypothesis remains the basic tool for understanding the
behaviour of generic systems in the semiclassical regime. For example, appli-
cation of it to Hamiltonian ratchets leads in a straightforward way to a theory
of directed quantum transport, which is outlined in Section 4.3. In this Sec-
tion we investigate also the eigenstates of extended mixed systems showing
directed transport in the absence of exact quantum periodicity. The remark-
able result is that there the semiclassical eigenfunction hypothesis fails, which
puts this class of systems into a terra incognita of quantum chaos that should
be explored in future work.



We have now given a brief account of the background and the scope of this
work. In short, we will discuss questions concerning spectrum, eigenfunctions
and dynamics of single-particle systems with chaotic or mixed classical limit.
However, it should be understood that we do not attempt to survey the whole
work which has been done in this field. The focus will be on motivating and
classifying the problems addressed in [A01]-[A11] without repeating in too
much detail methods or results presented in this appended material.

1.2 Billiards, maps and graphs

Before we proceed to the problems listed in the previous section we would like
to introduce briefly the model systems which we use, namely billiards, Hamil-
tonian maps and one-dimensional networks (graphs). We have stressed that
quantum chaos is concerned with universal properties which do not depend
on the type of model considered. Because of this universality it is often very
elucidating to pick the simplest model out of the variety of systems sharing
the property in question. This is also the strategy we will follow in this work.
Quantum chaos provides many examples where results can be generalized to
very complex situations, although they were originally obtained thanks to
the conceptual, numerical or analytical simplicity of minimal toy models.
What is more, the models often became interesting in their own right when
experimental realizations were developed. This process has been particularly
impressive with billiard systems.

Billiards A billiard is a two-dimensional domain with zero potential. It
is restricted by hard walls where specular reflection occurs. Energy is con-
served such that the phase space is effectively three dimensional. This is
the minimum for chaotic behaviour in continuous systems. Billiards offer a
number of properties which simplify their analysis as compared to a general
Hamiltonian system. Because of the absence of a potential, trajectories and
phase space structures do not depend on the energy, i.e., billiards are scal-
ing systems. As a consequence, time can be replaced by arclength and the
billiard dynamics can be understood in an entirely geometric way. More-
over, since the dynamics between two collisions with the boundary is trivial,
one can reduce the dynamics to the so-called Birkhoff map [68], which iter-
ates location and angle of subsequent reflections. The calculation of periodic
orbits—an important input for semiclassical theories—is often simplified by



a @ C@ d
Figure 1.1: Various billiard shapes which are popular models of dynamical sys-

tems. (a) Sinai billiard (b) Bunimovich stadium (c) cardioid (d) rectangle (e) circle
(f) L-shaped polygon (g) triangle (h) cosine billiard (i) annulus (j) mushroom.

the existence of a symbolic dynamics [69]-[72].

By adjusting the shape of the billiard, virtually any desired dynamical
behaviour can be achieved. For some famous examples it can be rigorously
proven that the dynamics is completely chaotic. We mention the Sinai billiard
[73], the Bunimovich stadium [74] and the cardioid [75]-[77], [72] (Fig. 1.1a-
c). Further there are integrable cases like circular or rectangular billiards
(Fig. 1.1d,e). Examples for pseudointegrability are provided by triangles
and other polygons [78]-[80] (Fig. 1.1f,g). Generic billiards, however, have
a mixed phase space which accommodates both regular and chaotic trajec-
tories. Popular examples are the cosine billiard [81, 82] or the (excentric)
annulus [83]-[86] (Fig. 1.1h,i). Remarkably, mushroom billiards (Fig. 1.1j)
provide a unique example for a system where the border between regular and
chaotic dynamics is not fractal and rigorously known [87].

For billiards, the Schrodinger equation reduces to the Helmholtz equation

(A+E)¥U(z,y) =0 (1.1)

with A = 02 4+ 07. The wave number £ is related to the energy via k =

v/2mE /h?. Due to the importance of billiard models, many schemes for a
solution of this equation have been developed. The most important ones are
the plane-wave decomposition [88, 89], the boundary-integral method [90],
the scattering approach [91, 92] and the scaling method [93].



Billiards do also possess a number of specific features which do not im-
mediately generalize to other models of quantum chaos. Some of them are
related to the singularity of the potential at the boundary. For example,
distortions of the boundary can never be considered as a small perturbation,
which excludes in particular the application of the KAM theorem to describe
the transition from integrable to chaotic dynamics (say from the circle to
the stadium or from the rectangle to the Sinai billiard). In a semiclassi-
cal quantization the boundary gives rise to particularly strong contributions
from non-classical diffractive trajectories [94]-[97]. And the specific geome-
try of popular billiard models like the Sinai billiard or the stadium lead to
the existence of non-generic families of marginally stable “bouncing-ball” tra-
jectories, which leave distinct traces in the corresponding quantum spectra
(98, 99, 81].

There is a huge number of experimental realizations for quantum billiards
or systems which are formally equivalent. We mention quantum corrals gen-
erated by assembling single-atom walls on the surface of metals [100, 101],
2D electron gases at the interface between different semiconductor materials
which can be structured by additional lateral electrodes [27, 28, 30], opti-
cal billiards for atoms generated by deflected laser beams [22]-[24], thin mi-
crowave resonators which are effectively two-dimensional for sufficiently large
wavelengths [33]-[42], microlasers [40]-[42] or vibrating soap films [102].

Also billiards with three spatial dimensions are of interest. However,
the relevant experimental realizations by classical fields require usually to
consider wavefunctions which are not scalar and Eq. (1.1) has to be modified
accordingly, see e.g. [103, 38].

We have relied on billiards as numerical models in [A01, A08] and will
use them in Chapters 3 and 4 to illustrate some important concepts.

Hamiltonian maps While chaos in continuous flows requires at least a
three-dimensional phase space, the dimensionality can be reduced to two for
the dynamics generated by a discrete map. We have already mentioned the
Birkhoff map as a way to simplify the study of billiards, and many further
examples of two-dimensional maps derived from Hamiltonian systems could
be added. However, here we would like to restrict attention to maps which
can be explicitly written in a form that is analogous to Hamilton’s equations
of motion

Tpy1 = $n+T’(pn)
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Figure 1.2: The phase space portrait of the kicked rotor (black dots) is compared
to the Husimi representation of a selected eigenfunction (colored density) at dif-
ferent values of the kick strength k. Regular and chaotic dynamics coexist in this
model. In agreement with the semiclassical eigenfunction hypothesis, the quantum
eigenfunctions localize in the semiclassical regime on one of the regular tori (left
and middle) or spread uniformly over a chaotic component (right).

Pnt1 = Pn— V,(mn—i—l) . (12)

We will refer to Eq. (1.2) as a Hamiltonian map. It can be derived from the

Hamiltonian of a one-dimensional system which is subject to time-periodic
kicks

H(p,,t)=T(p)+V(z) Y_ d(t—nT). (1.3)

Here, T'(p) and V' (z) denote the kinetic energy and the potential, respectively.
In order to obtain Eq. (1.2) from Eq. (1.3) one defines z, = z(t = n+¢) and
pn = p(t = n + ¢) with ¢ — 0 as position and momentum immediately after
the nth kick.

Because of specific form of the time dependence, the quantization of
kicked Hamiltonians is particularly simple and leads to the time-evolution
operator

U = exp(=i/hV(2)) exp(=i/RT(p)), (1.4)
describing the evolution of a quantum state from¢t =n+cectot' =n+1+
€. This operator, which is the quantum analogue of the Hamiltonian map
(1.2), factorizes into one term depending only on position and a second one



depending only on momentum. In position and momentum representation,
respectively, the effect of these factors is just a phase shift. Therefore a
very effective scheme to propagate a quantum state is to alternate position
and momentum representation by means of a Fourier transformation. This
numerical simplicity is the main reason why Hamiltonian maps are frequently
used models in quantum chaos.

An important special case of a Hamiltonian map is the kicked rotor with

2

T(p) = % V(z) =kcos x, (1.5)

leading in Eq. (1.2) to Chirikov’s standard map [104]. For increasing kick
strength k£ the phase space of this model changes from completely integrable
(k = 0) to mainly chaotic and is in general mixed (Fig. 1.2). The kicked rotor
has played a major role in the development of quantum chaos, in particular
for understanding quantum transport, dynamical localization and spectral
statistics for unitary matrices [105].

The dynamics of atoms in time-periodically modulated standing waves of
laser light [19, 20] provides the most important experimental realization of
the kicked rotator and other Hamiltonian maps.

Although Eq. (1.5) is probably the most famous example of a Hamilto-
nian map, it is by no means the only possible choice. In fact one may assume
virtually any smooth function for 7'(p) and V'(z). Phase space volume is auto-
matically preserved by the special form of Eq. (1.2) and this is the only basic
requirement for maps describing Hamiltonian systems. This flexibility allows
to “optimize” the classical phase space according to the particular problem
one is interested in. We have used this convenient property of Hamiltonians
maps in connection with Hamiltonian ratchets in [A10, A11]. Moreover, a
modified kicked rotor was used as numerical model in [A01, A08, A09].

Quantum graphs Quantized networks (“quantum graphs”) have a long
history as models in fields like mesoscopic and molecular physics or quan-
tum computation (see [106]-[109] and Refs. therein) but their connection to
quantum chaos has been established only recently by Kottos and Smilan-
sky [110]. The large number of publications extending this pioneering work
in a relatively short time clearly demonstrates the virtue of network mod-
els in quantum chaos. They concern problems as diverse as scattering and
transport [111]-[116], [A03, A06], quantum dynamics [115]-[118], spectral
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Figure 1.3: (a) illustrates the construction of the bond-scattering matrix with
the example of a matrix element describing a transition from a directed bond
d = [l = m] to d = [m — n]. Upon this transition the amplitude a4 to occupy d
is multiplied by a phase from the free propagation along d and by an element of
the vertex-scattering matrix at vertex m. (b) and (c) show a single vertex with
v = 5 attached bonds and DFT or Neumann boundary conditions, respectively.
Displayed are the probabilities of all outgoing waves for a wave with unit flux
incoming along one of the bonds. For the DFT vertex (b) the probability is
equidistributed over the outgoing bonds, each having a share of T'=1/5. For the
Neumann vertex (c) backscattering is enhanced to R = 9/25 while a transition to
a different bond occurs only with probability T' = 4/25.

statistics [119]-[131], [A02]-[A05], properties of wavefunctions [132]-[136],
[A07], the numerical modelling of extended systems [A01, A09] and exact
quantization of chaotic systems in terms of periodic orbits [137]-[142].

We shall now briefly repeat the formalism for the quantization of graphs.
More details can be found, e.g., in [106]. In order to describe a quantum state
with fixed wave number k£ on a graph we need to specify a complex number
aq for each directed bond d = [I — m] leading from vertex [ to vertex m. It
corresponds to the amplitude of a partial wave propagating in this direction.
The bond-scattering matrix S(k) is a unitary operator acting on the vector
of these amplitudes. It has the matrix elements

Sdl’d(k) = Sl’—)m’,l—)m(k) = 1 O-l(:nn’) eikLz—wn . (16)

The phase factor is due to the free propagation on the bond d = [l — m)|
while the other two factors describe the scattering at the vertex m and the
transition into a new directed bond d'. This is illustrated in Fig. 1.3a. While
the Kronecker § in Eq. (1.6) simply expresses the fact that a transition from
d to d' is possible only if there is a connecting vertex m = [I', the vertex-
scattering matrix o(™ encodes the scattering properties of this vertex. Pop-
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ular choices, referred to as discrete Fourier transform (DFT) and Neumann
vertices, respectively, are

m 1 .
Ul(n) = \/T_m exp(27iln/vp,) (1.7)
and
O-Z(':Ln) = 2/Um — O (1.8)
where [,n =1, ..., v, denote one out of the v,, bonds attached to vertex m.

The bond-scattering matrix S(k) may be regarded as a discrete-time prop-
agator on the graph, acting on a finite-dimensional Hilbert space of vectors
a. This interpretation corresponds to a coarse-grained description of the
network, where the propagation along the bonds is not resolved in detail. S
is then the analogue to the propagator U for maps, and the wave number
k is just a parameter that can be used to generate a statistical ensemble
for averaging. However, this parameter is very important as it provides in
Eq. (1.6) the rapidly fluctuating phases of matrix elements which are charac-
teristic of the semiclassical regime in more realistic systems. The existence of
this parameter is also the main difference to tight-binding models where the
Hamiltonian instead of the time-evolution operator is discretized. Although
this might look like a minor difference on first sight, it has the consequence
that standard tight-binding models are less suitable for investigating quan-
tum chaos or quantum-classical correspondence in general.

The classical system corresponding to the discrete quantum propaga-
tor S is obtained after replacing the transition amplitudes by probabilities,
i.e., by taking the absolute square of the matrix elements in Eq. (1.6) (see
Fig. 1.3b,c). Then the bond-scattering matrix turns into a doubly stochas-
tic matrix which describes a Markov chain on the discrete space of directed
bonds. This dynamics is a random walk which is not deterministic and
therefore, strictly speaking, not chaotic. However, there is a strong analogy
to chaotic systems. In particular, it is possible to define classical (periodic)
orbits which are unstable in the sense that the probability to follow a given
orbit decays exponentially in time, and there exists a trace formula which is
equivalent to the Gutzwiller formula up to the fact that it is exact and not
just a semiclassical approximation [106]. This will be made more explicit in
Section 2.3.

Quantum graphs can be used to model various types of dynamics by
adjusting the topology of the graph and the scattering properties of the

11



vertices. Random-matrix behaviour is obtained for large and sufficiently well
connected graphs with incommensurate bond lengths Ly. Other interesting
regimes include, e.g., intermediate statistics for Neumann star graphs [120,
123, 136], diffusion and quantum localization for extended networks with
low connectivity [107, 112, 132, A03], or a hierarchical type of dynamics,
modelling the chaotic sea in a mixed phases space, which is obtained for
chain-like networks with scaling transition probabilities [66, 117]. Moreover,
it is possible to generalize the quantization scheme sketched above such that,
e.g., relativistic effects and spin dynamics is included [127, 128], and non-
standard universality classes are obtained [130, 131].

Despite this flexibility there are also restrictions to the range of problems
for which quantum graphs are suitable models. One obvious point is that
all orbits in the corresponding classical system are unstable which prevents
a direct investigation of generic systems with a mixed phase space.

It should also be mentioned that there are relatively few experiments
which can be regarded as a direct implementation of a quantum graph. Some
authors have studied properties of light waves in connected networks of opti-
cal waveguides [143, 144], and in a recent paper a mechanical analogue based
on the vibrations of an elastic disk was suggested [145]. However, in view
of the attention quantum graphs have attracted recently, one can hope for
more experiments based on, e.g., networks of microwave transmission cables.

We have used quantum graphs as convenient numerical models in [A01,
A09] and exploited their analytical simplicity to obtain the results presented
in [A02]-[A07].

12



Chapter 2

Action correlations in
semiclassical expansions

2.1 Semiclassical theory of chaotic systems

Arguably the first paper on quantum chaos was written by Albert Einstein in
1917 [146], i.e., even before the modern quantum mechanics was developed.
The early quantum theory had established a picture which relied heavily on
quantum-classical correspondence and on the integrability of the classical
dynamics: the quantum states of the hydrogen atom were postulated to be
standing waves on certain classical orbits, selected by the condition that their
action integral is quantized. Einstein pointed out that such a prescription
must fail for systems where the phase space is not spanned by decoupled pairs
of action-angle variables. The problem of quantizing classically nonintegrable
systems had been put on the agenda of theoretical physics.

A few years later, in the mid-twenties of the last century, Heisenberg and
Schrodinger formulated the modern quantum theory which makes no refer-
ence to classical trajectories anymore. Nevertheless semiclassical theories,
which strive to express the quantum evolution in terms of purely classical
quantities, have always been very important. One reason is that for suf-
ficiently complex quantum systems an exact treatment of the Schrédinger
equation is way beyond the available computing power even today. Another
and more fundamental reason for the continuing interest in semiclassical the-
ories is the intuitive and analytical understanding of the behavior of quantum
systems which semiclassics often provides. For quantum chaos this latter as-
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pect is clearly dominant, as this field typically deals with low-dimensional
systems for which exact quantum computations are not only feasible but
even much easier than numerical calculations based on semiclassics.

The most systematic way to obtain a semiclassical approximation to a
given quantity starts from the Feynman path integral formulation of quan-
tum mechanics [147]. Integrals over coordinates are performed within the
stationary phase approximation (SPA), which is justified when the relevant
classical actions are much larger than Planck’s constant. The dominant con-
tribution comes then from the vicinity of classical trajectories v and the
result can be cast into the form

;A7 exp (%S7> : (2.1)

where S, denotes the classical action along the trajectory and A, is a complex
normalization prefactor which can also be calculated from classical informa-
tion only. The precise form of these quantities and the rules selecting the
contributing classical trajectories differ according to the application. The
most basic semiclassical result in the form of Eq. (2.1) is the van Vleck-
Gutzwiller propagator [148]

i 2 ! . i
Usa(z', 2" t) = ; det [27rha ];‘(;féin’t)} exp <ﬁR7(x’,x"; t) — i’/vg)

(2.2)

which approximates the quantum transition amplitude (z'|e” from

z" to 2’ in a time interval ¢ in terms of all trajectories - contributing to

this transition classically. In Eq. (2.2) the classical action is R, (2,2";t) =

f7 dt(2i* — V(x)) and the Maslov index v, counts the number of conjugate

points along ~y [59, 60].

From the propagator one obtains an approximation for the energy de-
pendent Green’s function G(E) = (E — H +ie)~! (e — +0) by a Legendre
transformation from time to energy, performed within SPA. The result has
again the form of Eq. (2.1),

1 1 1 ap i o
Gsa(2',2"; E) = = ; \/v’—vﬂ’det [27rih axi] exp <ﬁ57(x',x”; E) — 11/7§> )

I
(2.3)

i/hﬁt|x//>
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The set of contributing trajectories v is different from Eq. (2.2) as they
connect =’ and z' at a given constant energy E while the time is arbitrary.
In Eq. (2.3) a special coordinate system is used in which z)| runs along the
trajectory while for a system with d > 2 degrees of freedom the remaining
d — 1 coordinates are subsumed in z,. The action integral is now S, =
R, + FEt, = f7 pdgq.

From the semiclassical results Egs. (2.2), (2.3) one can derive semiclassical
expansions in the form of Eq. (2.1) for various other quantities which we can
mention only briefly here:

e Gutzwiller’s trace formula [59, 60] expresses fluctuations in the density
of states of a chaotic system by a sum over all (unstable) periodic or-
bits. According to the general relation between density of states and
Green’s function, d(E) = —7r~'Im tr G(F), it is obtained from Eq. (2.3)
by performing an integral [ dz G(z,; E) within stationary-phase ap-
proximation. Half a century after Einstein had posed the problem,
this was the solution for the semiclassical quantization problem in fully
chaotic systems, although the exponential proliferation of long orbits
make the resulting sum divergent. Therefore, even after a lot of work
has been invested in developing efficient resummation techniques [149]—
[152], the trace formula is of limited virtue for computing individual
levels. It is very useful, however, to understand the structure of the
spectrum on large scales, as long-range fluctuations are related to a few
short periodic orbits of the system.

e Miller developed a formalism for the semiclassical quantization of ar-
bitrary canonical transformations [153], i.e., of basis transformations
between two pairs ¢,p and @), P of canonically conjugate variables.
One special case is given by the dynamical transformations connecting
position and momentum at different times. In this case Eq. (2.2) is
reproduced by Miller’s approach.

e Another important special case of Miller is the scattering matrix of an
open system, which quantizes the transformation between the transver-
sal action-angle variables of the asymptotically free motion, i.e., the
scattering Poincaré map [154, 155]. In this case the exponent in Eq. (2.1)
is the reduced action, namely the action difference between the actual
trajectory and a free particle. The contributing trajectories are se-
lected by given values of the asymptotically conserved action variables

15



(including energy in conservative systems) before and after the scatter-
ing.

Particularly important scattering geometries are cavities (billiards) con-
nected to two waveguides. Of interest is the subblock of the scattering
matrix describing the transmission, because physically relevant quanti-
ties like conductance and shot noise for phase-coherent electron trans-
port can be derived from it. Semiclassically, elements of this transmis-
sion matrix are given by a sum over scattering trajectories connecting
the two attached waveguides [156, 157].

An important alternative route to the trace formula goes via a semi-
classical expansion of Bogomolny’s transfer operator [150, 158]. This
operator T'(E) is the quantization of a Poincaré section through a closed
system and the quantization condition is a secular equation of the form
det(I —T(E)) = 0. Semiclassically, the transfer operator is given by a
sum (2.1) over trajectories starting and ending on the surface of section.
If this surface is chosen suitably, only few trajectories contribute.

In a modification of this approach by Smilansky et al. [91, 92] the
transfer operator is replaced by the scattering matrix of an auxiliary
scattering system. The unitarity of this matrix is one advantage, an-
other one is the very illuminating connection between spectral and
scattering properties.

For our purpose, expansions in the form of Eq. (2.1) are the principal semi-
classical tool, although they are not the only possible approach. For example,
while the large number of trajectories contributing to Eq. (2.1) in a chaotic
system can make this expansion unsuitable for numerical calculations, there
exist very efficient numerical schemes for the semiclassical propagation of
complex quantum systems which are based on Heller’s variational wavepacket
dynamics [159, 160].

2.2 Quantum two-point correlations

With the exception of the density of states, the quantities discussed in the
previous section are complex amplitudes which are not directly measurable.
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Of physical interest are typically the associated probabilities, i.e., the abso-
lute squares of these amplitudes: |U(z', z",t)|? is the probability for a quan-
tum transition from z” to z’ in time ¢, the modulus squared of a scattering
matrix element is a partial cross section, the sum of the absolute squares of
the transition matrix elements gives the Landauer-Biittiker conductance etc.
Because of their structure, we can refer to all these quantities as quantum
two-point, correlation functions. The main goal of the present chapter is a
semiclassical theory of such two-point correlations.

The form factor The paradigmatic example of a two-point correlator is
the spectral form factor. It is defined as the smoothed Fourier transform of
the autocorrelation function of the quantum density of states. Equivalently,
K (t) can be represented in terms of the propagator U(t) = exp(—iHt/h) as

K(1) = {aU()P) (24)

and in this form it has the interpretation of an averaged quantum proba-
bility to return after time ¢ to the initial state. To evaluate Eq. (2.4) from
the energy spectrum, one considers a spectral window [E,, E, ] which is
small compared to classically relevant energy scales but contains many states,
N > 1. The effective propagator U = Z?jn]\i/;/z |7) e Bi/h (j] is then a fi-
nite matrix. The average (...) is taken over the energy E, or some external
parameter of the system. For example, the data shown in Fig. 2.4a were
obtained by averaging over 1,187 energy levels of a quarter Sinai billiard
in groups of N = 32 (cf Fig 10b of Ref. [A01]). For Fig. 2.4b the kicked
rotor with N = 64 was averaged over kicking strengths k& € [12.5,15], and
for Fig. 2.4c the bond-scattering matrix of a DFT star graph with N = 64
arms was substituted in Eq. (2.4) and the average was over the wavenumber
0<k< .

To interpret the result of Fig. 2.1 we note that in the absence of correla-
tions between different eigenvalues the form factor is the Fourier transform of
a d-shaped correlator, i.e., it is constant K (t) = 1. The deviation from unity
observed at small times is therefore the signature of correlations between
quantum levels (the “correlation hole”). Such correlations appear on energy
scales of the order of the mean level spacing A and greater and therefore on
time scales up to the Heisenberg time

tg = 2mh AL, (2.5)
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Figure 2.1: The form factor Eq. (2.4) for (a) the Sinai billiard, (b) the kicked
rotor and (c) a DFT star graph is compared to the RMT result Eq. (2.8) (smooth
curves). 7 is the time in units of the Heisenberg time Eq. (2.5).

From Fig. 2.1 we see that the form factors of completely different systems
coincide, if time is measured in units of the Heisenberg time

T=1t/ty. (2.6)

This is one instance for the universality of spectral fluctuations mentioned in
the introduction. It persists in all chaotic systems as long as the Heisenberg
time is the only relevant time scale.

Random-matrix theory Within RMT one extends the average in Eq. (2.4)
to an ensemble average over all unitary matrices U, irrespective of the spe-
cific system for which the form factor is required. The resulting ensemble
is called the CUE. Alternatively one may replace the Hamiltonian H by a
member of the GUE, which contains all Hermitian matrices. The result is
the same in the limit N — oo and equal to

T T<1
KCUE(T) = for . (27)
1 T>1

If time-reversal symmetry is present, one restricts the random-matrix
ensemble to all symmetric unitary matrices (COE) or all real Hermitian
matrices (GOE), respectively, and obtains instead

27 — 7 In(27 + 1) T<1
Kcogr(r) = for
2—7In gT—“ T>1
T—1
= 2r =272 4+27% + ... (r<1/2). (2.8)
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Fig. 2.1 demonstrates the numerical fact, that the form factor of chaotic
systems follows these predictions of RMT very well as long as no system-
specific properties are important. However, despite all numerical evidence
showing that quantum spectral statistics of chaotic systems agrees with RMT
[50], [1]-]9] and despite a lot of work towards an analytical justification of
this conjecture [161]-[163], the universality is not yet understood in detail.
In other words, it is not yet completely clear to which properties, to what
extent and precisely under what conditions RMT predictions do apply.

The diagonal approximation One possible approach to answer these
open questions concerning the applicability of RMT is a semiclassical theory
for two-point correlation functions. Taking the absolute square of a semiclas-
sical expansion in the form of Eq. (2.1) one obtains a double sum of classical
trajectories

ZA exp( ) ZAA,exp(h[S S]). (2.9)

The problem is now to find a method that allows to perform the summation
over v, analytically.

Until recently, the only such method was Berry’s diagonal approximation
[61], where one keeps only the terms for which 7, denote the same tra-
jectory or a pair of trajectories related by an exact symmetry such as time
reversal. To justify this approximation one notes that for these terms the
phases in Eq. (2.9) cancel exactly, S, = S,, while for other pairs 7,7 a
phase difference remains that is rapidly fluctuating in the semiclassical limit
h — 0. Therefore, an average over the energy or some control parameter as
in Eq. (2.4) is expected to remove these terms. For i — 0 the size of the
necessary averaging interval vanishes on any classical scale such that clas-
sical quantities like the amplitudes A, are effectively constant. Within the
diagonal approximation these amplitudes combine to the classical probability
P, = |A,[? of the trajectory and one obtains a sum in the form of ) P,
which can be evaluated using classical sum rules for periodic orbits [164, 165].

For example, the semiclassical result obtained for the spectral form factor
in this way is [61, 166]

K (1) = 47 Pa(Tts) (2.10)

where v = 1 in the absence of symmetries and v = 2 for systems invariant
under time-reversal. P (t) is the averaged classical probability to return in
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phase space. It is normalized such that Py(t > tes) = 1 after the time scale
lerg for the decay of classical correlations.

For the case where this time is negligible compared to the Heisenberg
time, tery < tu, one obtains the original result of Berry

Ksa(T) = 7. (2.11)

For v = 1 and 7 < 1 this is precisely the RMT result Eq. (2.7), while for
v = 2 only the leading order in the small-7 expansion (2.8) is reproduced.
In either case we see that the diagonal approximation is applicable for short
times only and misses, in particular, the saturation of the form factor beyond
the Heisenberg time, K(7 > 1) = 1 (Fig. 2.1). Berry compensated for
this drawback by a separate (not semiclassical) argument, showing that no
correlations persist after the Heisenberg time. This leads to

K(r)=1 (1>1), (2.12)

and connecting the functions (2.11) and (2.12) at their intersection point
7 = 77! he obtained a complete approximation to the form factor (which
happens to be exact for systems without time-reversal invariance).

Non-universal systems We have applied the outlined semiclassical the-
ory for the spectral form factor in situations which are interesting and chal-
lenging because of non-universal features in the classical dynamics [A01],
[A08]-[A10]. Then neither Berry’s result nor RMT is directly applicable.
Deferring spatially extended systems [A08]-[A10] to Chapter 4 we discuss
here only a simple example, namely a completely chaotic system consisting
of two identical, weakly connected cells (see Fig. 1b of [A01]). In this case
the following modifications of Berry’s approach were necessary:

(i) v in Eq. (2.10) contains a factor 2 irrespective of the presence or absence
of time-reversal invariance since almost all periodic orbits of the system
form a pair of two symmetry-related partners.

(ii) Since the cells are weakly connected, the classical equilibration between
them follows an exponential law with a large time constant. Therefore
the classical return probability in Eq. (2.10) is given by Py(t) = 1 +
o—t/ters
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(iii) The long-time behavior is non-trivial in this case. We derived an ap-
proximation, Eq. (52) of [A01], which contains a free parameter in
contrast to Eq. (2.12).

(iv) This parameter can be determined by matching at the Heisenberg time
7 = 1 the long-time behavior to the semiclassical expression Eq. (2.10).
The matching works well, in cases without time-reversal invariance, as
numerical studies for the kicked rotor confirm (Fig. 13 of [A01]). In
presence of time-reversal symmetry, however, the diagonal approxima-
tion is insufficient to describe the form factor correctly up to 7 = 1,
similar to the case of Eq. (2.11) above, and the free parameter of the
long-time dynamics cannot be determined semiclassically.

To summarize this part, the strength of the semiclassical theory of two-
point correlators such as the form factor is its potential to account for indi-
vidual properties of the specific system at hand. This information would be
lost in a random-matrix approach. The weakness of the semiclassical theory
is that the diagonal approximation fails after a short initial time. A semi-
classical theory which avoids the diagonal approximation is therefore a very
important goal.

2.3 Consequences of action correlations

The reason for the failure of the diagonal approximation are correlations
between the actions of different classical trajectories or periodic orbits v # v'.
Because of these correlations there are terms in Eq. (2.9) for which the action
difference is nonzero but almost constant with respect to variations in the
energy or some other parameter. Then these terms cannot be removed by
averaging and lead to deviations from the diagonal approximation. This was
anticipated already by Berry [61] and subsequent work [167, 168] revealed
details about the precise nature of the correlations. In particular, it was
found [168] that there exist families in which the orbits are correlated while
no correlations exist between different families. However, these insights did
not immediately lead to a scheme for calculating the effect of the correlations
analytically. For this purpose it is very useful to have a model system with
(i) a simple symbolic dynamics which allows to enumerate the classical orbits
v and (i) simple and explicit expressions for the corresponding actions S,
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and stability amplitudes A,. Such a model system is provided by quantum
graphs.

Action correlations in graphs As discussed in Section 1.2, the bond-
scattering matrix S on a graph can be interpreted as discrete time-evolution
operator. Then the amplitude for a transition between two directed bonds in
time ¢ is given by a matrix element of S?. It can be represented in the form
of Eq. (2.1) as a sum over sequences of t+1 connected bonds v = [y, ..., %,
i.e., as sum over the trajectories on the graph,

(SNaar = Y Ak, (2.13)
.Y =d"
T v =d

Here the total length of the trajectory is L, = L, + ...+ L,,_, and the
stability amplitude is the product of all the elements of vertex-scattering
matrices o encountered along 7. Inserting this expansion into Eq. (2.4)
and performing an average over k£ we obtained an expression for the form
factor in which the above-mentioned family structure is explicitly present
(Eq. 35 of [A02]): Correlated are orbits which have the same lengths because
they traverse the same set of bonds with the same multiplicity (but different
itinerary). An example for such a family of isometric orbits is shown in
Fig. 2.2.

This structure of the families of correlated orbits can be generalized from
graphs to other systems: a family is formed by those orbits which traverse
the same phase-space regions in different order or, if a symbolic dynamics
exists, whose code is formed by permutations of the same subsequences (see,
e.g., [169] for the example of the Baker map). In this sense we can regard
quantum graphs as generic models for the study of action correlations. At
the same time, they have a number of convenient specific properties which
considerably simplify all explicit analytical calculations.

Due to these simplifications we were able to perform the summations in
Eq. (2.1) analytically and without any approximation for some very simple
graphs and thus succeeded for the first time to obtain the correct quantum
two-point correlations from classical trajectories. Specifically we calculated
in [A02] the complete form factor for a graph with a single non-trivial vertex
(a star graph with two arms, Fig. 2 of [A02]). It is worth noting that even
for this simple model the calculation is quite complex and lead to proofs
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Figure 2.2: A complete family of six isometric orbits on a fully connected undi-
rected graph. Arrows indicate the direction of the orbit and numbers give its
itinerary. The orbits (a), (f), e.g., are connected by time-reversal and this pair is
therefore counted in the diagonal approximation. For other orbit pairs inside the
family such as (a), (b) or (a), (c) there is no simple transformation relating the
partners and yet their lengths are identical. (a), (b) is an example for a Sieber-
Richter pair of orbits: these orbits are composed of two loops and one of the loops
is traversed with opposite orientation in the two partner orbits.
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for some previously unknown combinatorial identities (see Egs. (60)-(66) of
[A02]). They represent an unexpected and interesting link between quantum
chaos and combinatorics [122].

Further we calculated in [A03] the quantum return probability P(t) =
|(i|]U%|4)|? for a chain-like graph with random bond lengths and random
vertex-scattering amplitudes. Again the calculation was based on an ex-
pansion in the form of Eq. (2.9) and did not involve any approximation. By
showing that P(t — oo) approaches a positive constant we were able to proof
Anderson localization within periodic-orbit theory for the first time.

Our approach to two-point correlations was applied by various authors in
other types of quantum graphs [170, 119, 121, 138, 171]. However, it does
not come as a surprise that the range of models allowing for exact results is
limited. In order to make further progress one needs approximation methods
that can account for action correlations in more general situations.

Sieber-Richter pairs An important step towards a semiclassical theory
of two-point correlations was taken in the recent work of Sieber and Richter
[172]-[174]. They considered the problem of weak localization, that is higher-
order corrections in two-point correlations which are due to time-reversal
invariance. An example are the nonlinear terms in the expansion of the spec-
tral form factor Eq. (2.8). They observed that the leading order correction
—272 is already reproduced from a small subset of correlated orbits, namely
those in which the partners forming a pair differ only in the orientation of a
single loop (see Fig. 2.2a, b for an example). Based on this idea, they cal-
culated analytically the leading-order correction to the spectral form factor
[173], and later the leading-order correction to the conductivity [174], in the
Hadamard-Gutzwiller model (a uniformly hyperbolic billiard on a surface of
constant negative curvature). In both cases agreement with RMT predictions
was found.

Later the method was applied in more general situations and consid-
erably extended [175]-[180], [128, 129]. For quantum graphs we derived in
[A04] a sufficient condition on the classical dynamics (Eq. (4) of [A04]) which
guarantees that the result of adding all Sieber-Richter pairs agrees with the
leading-order correction in Eq. (2.8). And we were also able to reproduce for
the first time the cubic term in this expansion from periodic orbits [A05].
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Beyond weak localization effects The existence of Sieber-Richter pairs
is dependent on time-reversal symmetry because only then part of a trajec-
tory (one of the two loops) can yield in either orientation the same action
contribution. On the other hand, also in systems without time-reversal in-
variance interference effects between correlated classical trajectories can be
very important.

The relevant trajectories can be found by an extension of the approach
of Sieber and Richter: one considers a trajectory which is composed of a
certain number of long segments and permutes their order. As the partners
generated in this way follow each other along the segments and differ only
in relatively short crossing regions, their actions are correlated. The relative
importance of the correlations diminishes with increasing number of segments
and crossing regions, i.e., for a calculation to leading order it is sufficient to
consider trajectories which consist of few segments.

On this basis we have demonstrated in [A06] that, within the semiclassical
approach, certain action correlations are responsible for shot noise (temporal
fluctuations in the current through a device due to the discreteness of the
electron charge). In contrast to weak localization, these correlations involve
four instead of just two classical trajectories (Fig. 2 of [A06]). We have explic-
itly calculated the effect of these correlations in a quantum graph modelling
a quantum dot with perfect coupling to two electron waveguides (Fig. 1 of
[A06]) and found agreement with the corresponding random-matrix predic-
tion. It is worth noting that in the case of shot noise, action correlations are
no small correction to the diagonal approximation. Rather they yield the
leading-order result.

In a more recent study [118] we have also related quantum corrections
in dynamical quantities, such as the probability to survive inside an open
system, to the presence of certain trajectory pairs with correlated actions.
Again quantum graphs were used as model system.

It can be expected that further applications of action correlations will be
found and that those examples which are so far restricted to quantum graphs
[A06, 118] will be generalized using the methods developed for weak localiza-
tion [175]-[180]. Nevertheless some fundamental open problems do remain.
First and foremost it would be desirable to have a complete semiclassical
description of two-point and higher order correlations, e.g., to obtain the full
series in Eq. (2.8) instead of just one or a few leading-order terms. Equally
important is a semiclassical theory for action correlations in systems with
non-universal classical features such as the examples described in Sections
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2.2 and 4.1. Up to now, almost all results obtained semiclassically beyond
the diagonal approximation simply reproduce the RMT behavior or were re-
stricted to very special models like star graphs [A02, 170, 119]. However,
only in a non-universal situation, where the result does not coincide with the
RMT prediction anyway, a semiclassical theory provides new results and is
therefore indispensable.
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Chapter 3

Strong scarring on classical
periodic orbits

We come now to one of the most direct manifestations of chaotic classical
dynamics in a quantum system, namely the scar phenomenon [181]-[198]. A
scar is a quantum eigenfunction with excess density near an unstable clas-
sical periodic orbit. Such states are neither expected within RMT [53] nor
within Berry’s random plane wave model [63], which predict that chaotic
wavefunctions must be evenly distributed over phase space, up to quantum
fluctuations. What is more, the Shnirelman quantum ergodicity theorem
[199] proofs that in the semiclassical limit of a completely chaotic system
almost all eigenfunctions have this property in a certain mathematical sense.
This was confirmed and qualified by many studies of wave functions in chaotic
systems [200]-[205]. However, exceptionally scarred states are possible and
were also observed in numerical simulations [195]-[198]. For illustration we
show in Fig. 3.1 two eigenstates of the cardioid billiard [90]. Fig. 3.1a shows
a typical state: the probability density to find the quantum particle at a
certain position fluctuates with a wavelength corresponding to the energy of
the state, but no other global structure is visible. The state is essentially
equidistributed over the available space. In contrast, the scarred state of
Fig. 3.1b is strongly enhanced along a periodic orbit of the billiard.

Even though such states are rare they can have important consequences,
as experimental evidence and applications of scars in systems as diverse as
microwave resonators [35, 206, quantum wells in a magnetic field [190], Fara-
day waves in confined geometries [192], open quantum dots [190, 191] and
semiconductor diode lasers [193, 194] show.
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Figure 3.1: The probability density of two eigenstates of the completely chaotic
cardioid billiard is shown with both, a gray scale and a coloured surface plot.
While the left state is essentially equidistributed over the whole billiard area, the
right example is strongly scarred by the periodic orbit shown with a red line. The
figure is courtesy of A. Bécker [90].

In these experiments, scarring is a property of individual eigenstates,
clearly visible to the eye when the state is plotted as, e.g., in Fig. 3.1. This
is also the way in which scarring was discovered in the first place: some
eigenstates of the stadium billiard (Fig. 1.1b) showed an unexpected clear
structure which was easily associated with classical periodic orbits. On the
other hand, the first semiclassical theory of scarring developed by Heller in
his seminal paper of 1984 [181] predicts only that within certain groups com-
prising many eigenstates an enhanced localization must exist on the average.
This is a priori a different phenomenon. Typically, enhanced wavefunction
localization due to the presence of short unstable orbits can be detected sta-
tistically although scarring in any particular state of the ensemble is much
too weak to be visible. For the discrimination of these two different types of
scars the terms weak and strong scarring are used.

Starting from Heller’s original ansatz the understanding of weak scarring
has been developed into a very detailed theory [188]. The main idea is
to connect localization properties of eigenfunctions to the dynamics of the
system, in particular to the return probability of a quantum state P(t) =
|(¥|U(t)|4)>. It can be argued that the short-time dynamics (t < ty),
approximated semiclassically with a few periodic orbits, provides sufficient
information to estimate the long-time average of this quantity which in turn
is nothing but the mean inverse participation number of the eigenstates in
the test state [¢), i.e., the standard measure of eigenfunction localization.

Unfortunately it is very hard to apply this line of argumentation to strong
scarring. In order to describe single eigenfunctions one needs precise infor-
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Figure 3.2: Periodic orbits supporting strong scars in quantum graphs are selected
by a topological criterion: the orbit must not be reflected at a vertex unless the
valency of the vertex is one [A07]. The upper row shows three cases (a)-(c) which
are excluded by this criterion. The lower row shows orbits (d)-(g) which do support
scars. Notably the shortest orbits bouncing back and forth between two adjacent
vertices are excluded for (a) fully connected and (c) star graphs. For star graphs

the shortest scarring orbits are shown in (f). Orbits with the same shape are
excluded, however, for fully connected graphs (b).

mation about the dynamics of the system at least up to the Heisenberg time
tu, Eq. (2.5), because only then the discreteness of the quantum spectrum
can be resolved. Because of their exponential proliferation this requires to
sum over huge sets of classical orbits. Implementing periodic orbit resumma-
tion techniques, scarring can indeed be predicted numerically for individual
states and from classical information only [185]-[187]. Nevertheless, with
this scheme one can at most hope to reproduce exact quantum computations
numerically; no further analytical insight can be obtained in this way.
Thus, with the exception of some very recent results [189, 135, 136], little
is known about the nature of strong scarring. It is tempting to regard weak
and strong scarring as essentially the same phenomenon, and in fact this
assumption is tacitly made in many publications on the subject. However, in
the appended paper [A07] we have studied this question for quantum graphs
and reached the opposite conclusion: strong and weak scarring are completely
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Figure 3.3: A fully connected graph with V' = 20 vertices and B = 190 (undi-
rected) bonds is displayed in (a). Two eigenstates are shown in (b) and (c) by
selecting the colour for each bond according to the intensity of the state (white
corresponding to zero, black to maximum). The state (b) is representative of the
vast majority of eigenstates which spread over the graph without any pronounced
structure. In contrast, the scarred state (c) is concentrated almost completely on
three bonds forming a triangle.

unrelated. In particular they lead to localization on different periodic orbits
and leave distinct traces in statistical localization measures such as the dis-
tribution of inverse participation numbers.

These conclusions are based on a theory predicting for graphs with Neu-
mann boundary conditions the orbits which support strong scars, the ener-
gies at which strong scars occur and the statistical distribution of scarring
intensities, see Egs. (7), (9) and (12) of [A07]. Remarkably, our criterion
for scarring orbits is based on topological information only and does not in-
volve the classical stability of the orbit. For example Fig. 3.2 shows in the
upper row three configurations (a)-(c) where no strong scars can exist while
the orbits (d)-(g) in the lower row do support scars. Although the periodic
orbits bouncing back and forth between two adjacent vertices are by far the
least unstable ones they are excluded from scarring in fully connected graphs
(a) and star graphs (c). This is in sharp contrast to weak scarring. Kaplan
[132] has shown that the theory of weak scarring outlined above does apply
to quantum graphs. One can conclude from it that the least unstable orbits
must have the strongest influence on eigenfunction localization. The reason
is that classical trajectories can cycle in their vicinity for a relatively long
time and thereby increase the return probability beyond the ergodic aver-
age. This effect is also visible in eigenfunctions statistics of quantum graphs
(Fig. 1 of [A07]). Enhanced localization in the majority of the states, resem-
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bling Fig. 3.3b, can be explained semiclassically using the shortest orbits of
the system only, but none of the states shows any pronounced scarring on
these orbits. On the other hand, the scarred state Fig. 3.3c is concentrated
on a triangular periodic orbit which is highly unstable but selected by our
topological criterion (Fig. 3.2d).

We would like to stress that with our approach we circumvent the above
mentioned problem of predicting the long-time dynamics of the system from
periodic orbits although we do describe individual eigenstates. This is possi-
ble because we do explicitly use the information that the states in question
are quantized, S|¢) = e?|¢). Then it turns out to be sufficient to consider
the quantum propagator S for very short times (¢t = 1,2), which is easily
done in terms of just a few classical trajectories. The implementation of this
idea is greatly facilitated by the analytic simplicity of quantum graphs and
therefore it is at the moment not clear if and how our scar theory can be
generalized to other systems. However, it is interesting to notice the analogy
of our ansatz to the argumentation establishing in [A11] the existence of am-
phibious eigenstates in disordered Hamiltonian ratchets. One can hope that
also in other situations new insights into the structure of eigenstates can be
gained from a combination of explicit quantization with short-time semiclas-
sics, possibly including quantum corrections as those discussed in Chapter
2.3.
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Chapter 4

Quasi-1D system with spatial
periodicity

In the present chapter we turn our attention to extended, spatially periodic
systems. They are ubiquitous in nature and the physically most important
questions concern their transport properties. A prominent paradigm comes
from solid state physics, where the connection between the atomic structure
of crystalline materials and the conductivity of electrons or heat are a topic
of research. However, atomic or molecular crystals are at most marginally
related to quantum chaos because for these systems one is normally inter-
ested in the deep quantum regime where only one or a few energy bands are
occupied. In this situation the classical limit of the system is hardly relevant.

More interesting from our point of view are potentials with mesoscopic
spatial periods, of the order of ten to a few hundred nanometers. Exam-
ples include electronic transport through artificial crystals in semiconductor
nanostructures (antidot lattices) [207, 208], semiconductor ratchets [209, 210]
or the dynamics of cold atoms in optical potentials created by a laser beam
[19, 20], i.e., precisely those situations where billiards and quantized maps
are relevant models. Under suitable experimental conditions long decoher-
ence times are possible and quantum effects remain important although many
levels contribute to the dynamics. Then the classical phase space leaves very
distinct traces in the quantum transport properties which we will address in
this section.
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4.1 Diffusive systems with spatial periodicity
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Figure 4.1: The Lorentz gas is an example for an extended chaotic system with
normal classical diffusion. It represents a single point particle scattered by circular
obstacles which are arranged (a) in a periodic and (b) in a disordered geometry.
Normal classical diffusion results in either case as long as the particle has a finite
horizon, i.e., as long as a finite distance between successive collisions with the
obstacles is guaranteed.

Chaotic dynamics in extended Hamiltonian systems usually leads to dif-
fusion on large spatial scales. It is important to realize that no randomness in
the dynamics is required for this behavior, neither stochastically fluctuating
forces as in the case of Brownian motion nor spatial disorder which is frozen
in time. Classical chaos is sufficient for diffusive transport since it leads to
the decay of all correlations, including a randomization of the velocity in the
course of time. As an illustration, Fig. 4.1 shows the Lorentz gas (a spatially
extended version of the Sinai billiard).

In such a situation, the distribution of an ensemble of classical particles
which were initially well localized in space remains symmetric around the
initial position, Z(t) = const., and has a width growing with time as a power
law. Fully chaotic dynamics with exponentially decaying correlations leads
to normal diffusion Az = Dt, and in the present section we will concentrate
on this typical case.

While for the classical transport the presence of spatial periodicity is im-
material, quantum transport depends crucially on it. Periodic systems have
a band spectrum, and under very general conditions this leads to ballistic
transport for large times, Az ~ t2. On the other hand, in disordered systems
one finds Anderson localization such that asymptotically there is no quantum
transport, Ax =const. While transport theory for disordered systems is a
very well developed field [7]-[9], [55]-[58], not so much is known about the
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scenario, where spatial periodicity and classical diffusion are simultaneously
present. In [A08] we have applied the semiclassical theory of spectral two-
point correlations (Section 2.2) to the band spectra of periodic, classically
chaotic systems (see Fig. 3 of [A08] for an example of such a spectrum).

However, in this case the form factor Eq. (2.4) is of limited significance
because in its definition no information about the band structure of the
spectrum is preserved. It is possible to project the propagator U onto the
subspace of a given Bloch phase 6, but direct substitution of Uy into Eq. (2.4)
does not yield any information about correlations in the spectrum for different
values of 6. In order to account for such correlations, which are important
for describing quantum transport, we generalized the form factor to

Kalt) = (U (0)) (11)

[A08]. U is here replaced by the Fourier transform of the symmetry-projected
propagator
1 2T .
Un(t) = — / A0 =700, (1) (4.2)
0

2T

or the discrete analogue of Eq. (4.2) for a system with a finite number of
identical unit cells. For n = 0 Eq. (4.1) reduces to the normal form factor
Eq. (2.4). While the latter one has the interpretation of a quantum proba-
bility to return to the initial state and in particular to the initial unit cell,
K, (t) describes transitions which span n unit cells in time ¢, i.e., n/t has the
interpretation of a velocity. Indeed it can be shown that for for long times,
t — oo, K,(t) is proportional to the the probability of finding a Bloch state
with velocity expectation value v = n/t [211]. This underlines the connec-
tion between quantum transport and the spectral information contained in
the generalized form factor.

Within the diagonal approximation the generalized form factor can be
expressed in terms of the periodic orbits of a single unit cell on a cylinder,
i.e., with periodic boundary conditions. The index n is given by the winding
number of the orbit, which counts how often the obit encircles the unit cell
before it closes onto itself. Each such winding corresponds in the extended
system to a transition into the next unit cell. The sum over all classical
orbits with winding number n gives a discretized classical propagator P,(t)
and in analogy to Eq. (2.10) we find

Ky (1) = YT Pa(7 tn) - (4.3)
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v, counts here the degeneracy of orbits in the extended system which is for
almost all orbits given by the total number of unit cells. For large time ¢ the
classical dynamics is diffusive and P, (¢) can be approximated by a Gaussian
with width Dt such that finally an explicit semiclassical expression for the
generalized form factor can be given which depends only on the diffusion
constant D (Eq. (10) of [A08]). As in Section 2.2 this semiclassical result is
valid for short times only and is complemented by a separate expression for
the long-time behavior which essentially describes simple ballistic spreading
due to the underlying band structure of the spectrum. By matching both
expressions at the Heisenberg time a complete semiclassical theory for the
generalized form factor is obtained which compares favourably to RMT re-
sults and numerical data (Figs. 2, 4 of [A08]).

This theory can be extended such that also the transition from exact
periodicity to weak disorder can be described [A09]. Upon this transition,
the main modification in Eq. (4.3) is the destruction of the exact degeneracy
between many orbits, i.e., the reduction of v from a value proportional to the
system size to unity (or two in presence of time-reversal symmetry). However,
as explained in Chapter 2, a theory based on the diagonal approximation is
not capable to describe the effect of stronger disorder leading to Anderson
localization. As shown in [A03], inclusion of non-trivial action correlations
may remedy this flaw of the semiclassical theory, but for systems other than
simple graphs this is at present beyond the state of the art.

4.2 Classical Hamiltonian ratchets

While diffusive chaotic transport is an established and well-studied scenario,
it has been ignored until recently that classical transport in extended chaotic
systems can also be ballistic and directed, T ~ t. Flach et al. [212] investi-
gated Hamiltonians of the form

H(p,z,t) = p; +V(z)+ ft)z, (4.4)

where V' (z) and f(¢) are periodic functions of position and time, respectively.
Their numerical simulations did show a non-zero average velocity for chaotic
trajectories unless specific choices of V' and f lead to dynamical symmetries.
In the absence of such symmetries ensembles of particles initialized with a
thermal distribution start to move in one direction although the driving force
averaged over space and time is zero.
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Systems with this ability to generate directed motion using an unbiased
periodic potential are commonly referred to as ratchets. Two recent reviews
[213, 214] provide a comprehensive account of this subject. The investiga-
tion of ratchets was originally intended to elucidate fundamental principles
of thermodynamics [215]. Later it was stimulated by the biological task of
explaining the functioning of molecular motors [216] and by emerging applica-
tions such as the separation of particles [217]-[219]. Along with this process,
one has tried to gain insight into the basic mechanism of ratchet transport by
reducing the models under investigation as far as possible. External noise, for
example, which originally served to account for the fluctuating environment
of molecular motors, has been replaced by deterministic dissipative chaos
[220, 221]. Seen in this context, the work of Flach et al. [212] provided the
first evidence for the existence of Hamiltonian ratchets, where time reversal
symmetry is broken by mechanisms other than friction and dissipation.

The symmetry arguments of Flach et al. make the existence of Hamil-
tonian ratchets plausible, but they are insufficient for a quantitative under-
standing of the transport. For example, they do not allow to predict direction
and velocity of transport. In Refs. [222, A10] we developed a theory which
closes this gap. Before we come to that we would like to explain the mech-
anism underlying the observed chaotic transport with an intuitive example
which is again based on the Lorentz gas (Fig. 4.2a). A perpendicular mag-
netic field breaks the time-reversal symmetry and generates regular “skip-
ping” trajectories which transport ballistically in one direction. Due to the
particular asymmetric geometry the trajectories transporting in the oppo-
site direction must collide with the dispersing obstacles in the channel which
renders them chaotic. As a consequence one obtains a chaotic phase-space
component with a non-zero mean velocity. The effect persists in a weakly
disordered system provided that there exists an invariant set of transporting
regular trajectories (Fig. 4.2b). We stress that the magnetic field alone is
not sufficient to generate ballistic transport. In Fig. 4.2c the upper wall has
obstacles as well such that the phase space is nearly completely chaotic. In
this case chaotic transport is diffusive despite the absence of time-reversal
symmetry.

Directed transport is obtained for an ensemble of particles prepared ini-
tially in one particular invariant set of the phase space. In this respect the
billiard model is equivalent to Hamiltonian ratchets. However, in a billiard
this preparation of initial conditions cannot be achieved by adjusting the
mean energy (temperature) of the ensemble alone. In contrast, this is possi-
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Figure 4.2: In this model, regular “skipping” trajectories (dashed lines) are in-
duced by a magnetic field (a,b). Due to the particular geometry all such skipping
orbits transport in one direction. The remaining part of phase space is mainly
chaotic for the selected parameters, and therefore chaotic trajectories (full lines)
compensate for the presence of the skipping orbits by an average transport in the
opposite direction. This mechanism works also in the presence of disorder (b).
When (almost) all regular trajectories are destroyed, however, the magnetic field
alone cannot induce directed chaotic transport (c).

ble in nonequilibrium systems, with a time-dependent Hamiltonian such as
Eq. (4.4). For this case a phase-space portrait is shown in Fig. 4.3. One ob-
serves a stochastic layer which is limited in momentum from below and above
by two extended invariant tori [ and u. It comprises, besides a large chaotic
sea, a number of regular islands 7 around stable periodic orbits. These regu-
lar components play a role which is analogous to the skipping trajectories of
Fig. 4.2. Note that in the model of Fig. 4.3 a thermal distribution with low
temperature (p ~ 0) leads to initial conditions which are mainly inside the
chaotic sea. Such an ensemble is tranported with some non-zero asymptotic
velocity vep.

A main result of [A10] is an expression for this chaotic velocity which is
based exclusively on properties of the regular phase space components. v,
depends (i) on averages of the kinetic energy T = p?/2 along the extended
tori | and v limiting the chaotic sea and (ii) on the areas A; and winding
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a t=10,000

t=100

Figure 4.3: The relation between classical phase space structures and directed
transport is illustrated. The left panel shows a stroboscopic Poincareé section
for a spatial unit cell of a typical Hamiltonian in the form of Eq. (4.4), namely
with V(z) = [sin(27z) + 0.3sin(4nz + 0.4)]/5.76 and f(t) = [—4.67zsin(27t) —
2.767z sin(4nt + 0.7)]/5.76 as in Ref. [212]. A stochastic layer consisting of a
chaotic sea and embedded regular islands is limited from below and above by a
region where extended regular tori dominate. Each of these different types of
invariant manifolds supports directed ballistic transport. This is demonstrated
by iterating a number of initial conditions chosen randomly from the rectangular
regions a-d and plotting in the right panels the distribution of their velocities, av-
eraged over 100 periods of the driving force (10,000 periods for the bold lines). For
the regular initial conditions b-d 100 trajectories were used. For the chaotic sea
large fluctuations in the velocity require much better statistics, but for 10,000 tra-
jectories and long iteration time directed transport clearly leads to an asymmetric
velocity distribution. According to Eq. (4.5) its mean value can be predicted by
analyzing the regular regions adjacent to the chaotic sea.
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numbers w; of the embedded islands,

v = D0 — (T — > Awwi
¢ Ala.yer — Zz Az

The derivation of this relation assumes a finite and ergodic chaotic phase-
space component. Otherwise the problem is not well-defined since the ex-
istence of vy, as the long-time limit of the transport velocity for almost all
chaotic trajectories is not guaranteed and Eq. (4.5) cannot be applied. This
occurs for example in systems with more than three phase-space dimensions.
In this case Arnold diffusion may allow an unlimited spreading of chaotic tra-
jectories in phase space [223, 104]. Due to this difficulty, essentially nothing
is known about ratchet transport in driven Hamiltonian systems with two or
more spatial dimensions.

Also in driven 1D systems the conditions for the applicability of Eq. (4.5)
may be violated. Using singular potentials one can construct examples in
which chaotic trajectories can absorb infinite energy from the driving force
such that the stochastic layer is unlimited. It has been shown that such
models can function as a type of Hamiltonian ratchet different from the one
we discuss here [224].

However, in the case of quasi 1D systems with finite potentials the chaotic
component is compact because for very large momenta the driving can be
considered as a small perturbation and thus the regular motion of free parti-
cles is restored. In this case Eq. (4.5) applies. The essential features of such
Hamiltonian ratchets can be reproduced by models for which the phase space
of a unit cell is compact. A simple example is a Hamiltonian map in the form
of Eq. (1.2), restricted to a cylindrical phase space. If T'(p) and V(z) are
suitably chosen one obtains a very simple phase-space structure which nev-
ertheless displays all essential features of a Hamiltonian ratchet (Fig. 4.4). It
has a single regular island transporting with velocity v = —1, i.e., one unit
cell to the left per period of the driving. This island is embedded in a chaotic
sea which shows transport in the opposite direction. In this case Eq. (4.5)
takes the simple form ven, = freg/(1 — Areg), Where fi, denotes the fraction
of phase space occupied by the island. An explicit example for such a model,
which we proposed in [A10] as minimal Hamiltonian ratchet, is given by

(4.5)

V(z) = (zmodl —1/2)%/2
T(p) = [p|+ 3sin(2mp)/(4n?). (4.6)
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Figure 4.4: Phase-space transport in Hamiltonian ratchets. Classical transport
is restricted to individual invariant manifolds, in this example a regular island
transporting to the left (green) and the chaotic sea balancing this by a transport
to the right (red). Quantization induces a finite resolution h in phase space which
couples regular and chaotic manifolds by tunneling (blue). Therefore a wavepacket
which is initially localized inside the island leaks to the chaotic sea and starts to
move opposite to the island chain.

For quantized ratchets, and in particular in the presence of additional disor-
der, models of this type are the only way to reduce the numerical complexity
to a tractable level. An additional advantage is that due to the simplicity
of maps it is relatively easy to find optimal parameters which lead to very
pronounced directed chaotic transport (see Fig. 1c,d of [A10]).

4.3 Semiclassical theory of quantum ratchets

Having understood the classical mechanism leading to ballistic and directed
transport in Hamiltonian ratchets one may ask if this effect is present also in
quantum systems, at least in the semiclassical regime. This question is not
trivial although the correspondence principle guarantees that classical and
quantum dynamics agree at least for some initial period. However, as one
is interested in asymptotic long-time transport, non-classical processes like
tunneling and localization may become important. The situation is schemat-
ically shown in Fig. 4.4 for the example of a wavepacket initially localized
inside one unit cell and on one of the transporting regular islands of the sys-
tem. This is the quantum analogue to an ensemble of classical trajectories
(cf Fig. 4.3b). Initially, the wavepacket moves as the classical island one unit
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cell to the left in one period of the driving. However, at the same time a
certain fraction of the wavepacket tunnels out of the island and starts to
populate the chaotic sea. Thus there is an exponentially decreasing proba-
bility of finding the quantum particle inside the island that it should have
reached according to classical mechanics. A numerical confirmation of this
fact is shown in Fig. 4.5b.

Actually, this figure combines data from two slightly different quantum
systems which have the minimal model of Eq. (4.6) as common classical
limit. We have studied them in [A10] and [A11], respectively. The difference
is the effective value of Planck’s constant h.g, i.e., the dimensionless ratio
between h and the phase-space volume of the unit cell. If it is a rational
number, the quantum system is exactly periodic. For irrational he.g this is
not the case, despite the underlying periodic classical phase space. This can
be understood intuitively if we recall that a quantum state occupies in phase
space a Planck cell with area h. Thus, only for hes = 1/¢ a single unit
cell with periodic boundary conditions can be exactly tiled by ¢ € N Planck
cells. For a general rational heg = p/q this is possible for the union of p
unit cells, while for irrational heg only the infinite system allows for a proper
quantization.

As changing a rational into an irrational heg requires only a small dif-
ference, the rate for tunneling out of the island is hardly affected and the
probability of being inside the classically expected unit cell is essentially the
same for the two models (Fig. 4.5b and inset of 4.5a). However, the fate of
the part of the wavepacket that has reached the chaotic sea is entirely differ-
ent (Fig. 4.5a). In the exactly periodic model most of the probability tunnels
back into the transporting island, albeit not in the classical unit cell but in
those lagging slightly behind. Effectively the major part of the wavepacket
remains thus in the island chain and the asymptotic quantum transport ve-
locity approaches the classical one in the semiclassical limit A — 0 (see
also Fig. 2 of [A10]). In contrast, for the aperiodic model an equilibration
between island chain and chaotic sea takes place such that the transport
velocity asymptotically vanishes.

It is very hard to understand this difference from a purely dynamical point
of view, as details of the interference between the regular and the chaotic
parts of the packet are important. A much clearer picture of the long-time
behaviour is obtained by studying the eigenfunctions in the periodic and the
aperiodic ratchet models.

For the periodic case there is a band spectrum (Fig. 4.6a) and the asymp-
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Figure 4.5: (a) Black line: Wave packet prepared in the regular island of the
unit cell z = 0 and propagated to time £ = 1000 in the minimal ratchet model
Eq. (4.6) with h~! = 16. The classical probability would be restricted to the unit
cell z = —1000, while the quantum wavepacket has tunneled out of this “classical”
unit cell and starts spreading. A large peak remains, however, slightly behind
the classically expected position. Gray line: Same for irrational h~! = 16 + o
(0 = (v/5—1)/2 is the golden mean). In this case the Floquet operator has no
spatial periodicity. The part of the wave packet outside the classical unit cell
localizes and develops an asymmetric envelope with approximately exponential
tails. Inset: The probability remaining inside the classical unit cell z = —1000 is
the same for rational and irrational A but the distribution of the probability in
the neighboring cells is drastically different (note the logarithmic scale). (b) Due
to dynamical tunneling the quantum probability in the classical unit cell decays
exponentially as a function of time. With respect to this decay the periodic model
with A~! = 16 is almost indistinguishable from the aperiodic model with irrational
h1=16+o0.
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Figure 4.6: (a) Quasienergy band spectrum of the minimal ratchet model Eq. (4.6)
at h~! = 32. Regular bands appear as approximately straight lines with negative
slope. (b) The Husimi representation of the Floquet eigenstates corresponding
to these points in the spectrum are concentrated inside the regular island. (c)
Most other eigenfunctions spread over the entire chaotic sea but avoid the regular
island. The corresponding bands have strongly fluctuating slopes. (d) Distribution
of band slopes (velocity expectation values) at h~! = 128. The sharp peak at
v = —1 corresponds to the regular bands, the broader peak to the chaotic bands.
The velocity of the classically chaotic transport is marked by an arrow.
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Figure 4.7: Quasienergy band spectrum of the minimal ratchet model at h~! = 32.
The linewidth encodes the overlap |(¢a|t)|* of the corresponding Floquet state
|$ak) With an initial wavepacket |). In (a) this wavepacket is a coherent state
located in the chaotic part of the phase space of a single unit cell, in (b) it is
concentrated on a torus inside the regular island.
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totic transport velocity of a state is simply given by the band slope. The
eigenstates are spatially extended, but they are localized in the phase space
of a unit cell on one of the classically invariant manifolds, i.e., there are
regular and chaotic eigenstates (Fig. 4.6b,c). As explained in Chapter 1,
this is expected from the semiclassical eigenfunction hypothesis which does
apply here since due to the periodicity each unit cell represents effectively
a finite system. The corresponding band slopes are close to the classical
transport velocity g of the island for the regular states and distributed
around the chaotic velocity ve, for the chaotic ones (Fig. 4.6d). With the
help of a quantum sum rule analogous to Eq. (4.5) we have formulated this
fact more quantitatively [A10]. Coming back to the asymptotic transport
of a wavepacket, one has a superposition of eigenstates. For a wavepacket
localized initially inside one unit cell and on the regular/chaotic subset of
phase space this superposition will include regular/chaotic states from the
whole Brillouin zone (Fig. 4.7) and thus the asymptotic transport will be
close to an average over the respective band slopes. Using these arguments
it becomes clear that the ratchet transport persists in the exactly periodic
quantum model despite the presence of tunneling. A more detailed analysis
of the band spectrum can also explain the conspicuous shape of the evolving
wavepacket shown in Fig. 4.5, with a peak that is slightly behind the classical
unit cell [211].

In the aperiodic case the localization properties of the eigenstates are ex-
actly opposite to the periodic one: they are spatially localized but do not
show any localization with respect to the classical phase-space structures.
We have developed a theory which establishes that this behaviour is retained
in the semiclassical limit [A11]. Thus, Hamiltonian ratchets with disorder
are the first example of a system to which the semiclassical eigenfunction hy-
pothesis does not apply. All eigenstates are of a novel “amphibious” type and
spread equally over the chaotic sea and the regular islands. Another inter-
esting property of these amphibious states is their giant localization length
which grows exponentially with decreasing heg. Transport of wavepackets
must cease finally due to localization, but in the semiclassical limit it per-
sists to exponentially long times. How precisely this transport is encoded
in the eigenstates is unknown at present, and the detailed nature of the
amphibious states remains a rich field for further investigation.
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Summary and outlook

We have presented a number of selected results concerning the quantum
properties of nonintegrable systems. Hopefully it has become clear that in-
teresting and nontrivial problems exist in this field already in a simplified
situation in which a single-particle description is valid and important physi-
cal effects such as decoherence and dissipation are neglected. The theoretical
investigation of such an idealized setting is justified and motivated by grow-
ing experimental capabilities to realize very “clean” systems, in which highly
excited states retain quantum coherence over a very long time. Such systems
provide applications for the semiclassical theory of spectra and eigenstates
in the presence of classical chaos to which we have contributed.

After more than 30 years of intense research quantum chaos has come of
age to some extent. In particular the properties of systems with an unstruc-
tured and completely chaotic phase space are well understood thanks to the
success of random-matrix theory. Recent progress in semiclassical methods
warrants the hope that many of the predictions of RMT can soon be derived
directly from the underlying chaotic dynamics, with precise statements on
their range of validity.

Therefore, RMT plays nowadays mainly the role of a benchmark, and of
primary physical interest are the deviations from it. We have explained that
there exist universal quantum manifestations of the system-specific classical
dynamics, which can be met in all quantized chaotic systems irrespective of
the concrete physical realization. Because of this universality, valuable in-
sight can be gained from minimal models such as billiards, Hamiltonian maps
and quantum graphs as long as it is not possible to formulate a completely
general semiclassical theory.

Indeed this ultimate goal is still far from being realized, at least in systems
in which the classical phase space is mixed or structured in some other way,
and this leaves plenty room for future work.
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