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A relation between the bond scattering
matrix and the spectral counting function
for quantum graphs

Holger Schanz

ABSTRACT. For finite quantum graphs with standard boundary
conditions (continuity and current conservation at the vertices) we
derive a simple identity relating the eigenphases of the bond scat-
tering matrix at some given energy and the spectral counting func-
tion of the Hamiltonian at the same energy. Using this relation it
is possible to compute the counting function without knowledge of
the spectrum. Our result may be applied to speed up the numer-
ical calculation of eigenenergies in particular in situations where
the level repulsion is weak (e. g. quantum graphs with localized
eigenstates).

1. Introduction

One important reason why quantum graphs are very convenient and
popular model systems is their numerical simplicity. For example, the
energy eigenvalues of the Schrodinger operator on a quantum graph
can be found by solving a secular equation in the form

(1.1) det(A(k,)) =0 (n=1,2,...),

where A(k) is a finite matrix which is easy to construct. There are var-
ious ways to choose this matrix, and the three most important versions
have been given by Kottos and Smilansky [1]. Namely, one can set

(1) Ap = h, where h has a dimension equal to the number of ver-
tices of the graph, dim(h) = V. The matrix A is found when

2000 Mathematics Subject Classification. Primary 81V99, 81-08.
Key words and phrases. quantum graph, scattering, eigenvalue distribution.

©0000 (copyright holder)



2 HOLGER SCHANZ

the boundary conditions are expressed as a set of linear equa-
tions for the amplitudes at the vertices. Thus, for an eigenen-
ergy the vector |¢,) with h(k,) |¢,) = |0) gives the values of
the wave function on the vertices (up to normalization).

(2) As =1—S(k), where S(k) is the bond scattering matrix with
a dimension equal to the number of directed bonds on the
graph, dim(S) = 2B. The vector |a,) solving S(k,) |a,) = |an)
gives the amplitudes of the partial waves emanating from the
vertices. 3

(3) Ag =1 — S(k) where S is the scattering matrix of the graph
when it is turned into an auxiliary open system by attaching
one or more semi-infinite leads. Its dimension dim(S) > 1 is
equal to the number of leads and the eigenvectors with eigen-
value one give the amplitude of the eigenstates at the points
where the leads are attached.

On first sight the bond scattering matrix may seem to be the least fa-
vorable of the above options since its dimension is largest. However, it
has properties which can make up for this drawback. For example, the
elements of the bond scattering matrix are explicitly known while the
calculation of S(k) involves the inversion of I —S(k) [2]. In comparison
with the vertex matrix h(k), the bond scattering matrix has the advan-
tage that it does not rely on the continuity of the wave function across
the vertices and is also applicable to graphs with the more general
boundary conditions described in [3]. Even for graphs with standard
(mixed) boundary conditions [4] the vertex matrix is numerically not
very convenient since it has as a function of k either poles or spurious
zeroes (solutions of Eq. (1.1) which do not correspond to an eigenstate
of the graph) [1]. Finally, as we shall show in this contribution, the
bond scattering matrix has an important numerical advantage which
is related to the algorithm for solving Eq. (1.1).

The typical strategy for finding the roots of a highly nonlinear equa-
tion such as Eq. (1.1) has two steps: First one tries to find an estimate
for a solution. This could be an interval in which a sign change of (the
real part of) the secular function occurs, or simply a value where the
modulus of this function is relatively small. In the second step one
can use iterative methods to improve the accuracy of the solution (or
to reject it if the initial guess was wrong). Once a sign change has
been detected, it is, for sufficiently well-behaved functions, not a prob-
lem to converge to a solution in a few iterations. However, locating a
suitable initial guess can be a problem if one needs to be sure that all
eigenvalues are found. Then this step requires to compute the secular
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function on a grid for which the spacing between neighboring points is
much lower than the average distance between eigenvalues. The rea-
son is that eigenvalues can be almost degenerate even if there are no
symmetries allowing for exact level crossings. So either one wastes a
lot of computer time with a grid that is much too dense, or one wastes
a lot of human time searching for missing eigenvalues and filling in the
gaps.

We will show how this problem can be avoided if the secular function
is based on the bond scattering matrix. The point is that it is possible
to calculate directly from the bond scattering matrix S at wave number
k the counting function (integrated density of states)

(1.2) Nk)={#n:0<k, <k},

which counts the number of eigenvalues up to k. More precisely, we
will give in Eq. (3.24) below an identity

(1.3) N(k) = N({0:(0)}, {0x(K)}, k)

which expresses the counting function in terms of the eigenphases 6y
of the bond scattering matrix at wave numbers 0 and k£ without any
reference to the actual eigenvalues k,. As the function (1.3) involves
explicit knowledge of the eigenphases of S(k), it can be calculated
only numerically in non-trivial situations. With its help it is possible
to perform the root searching for Eq. (1.1) with arbitrarily large grid
size without losing any eigenvalues. It is also possible to calculate
directly an eigenvalue with given number m without prior calculation
of all k, < k,,. Finally, in some statistical applications such as the
calculation of the number variance of the energy levels [5] it is actually
sufficient to know how many levels are in a given energy interval. Then
Eq. (1.3) enables one to avoid the calculation of eigenvalues altogether.

In this paper we will construct the function in Eq. (1.3) for the
Schrodinger operator on a connected graph with standard (mixed)
boundary conditions on all vertices, i.e., we require that the wave func-
tion is continuous across all vertices. We begin in the following Section
2 by compiling a few relevant definitions and results from the literature.
Section 3 contains the derivation of our main result. Some numerical
data will be shown in Section 4, and the application of Eq. (1.3) in
the numerical determination of eigenvalues will be discussed. Finally,
Section 5 contains some concluding remarks.
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2. Definitions and notations

Although we essentially follow the definitions given in [1] we briefly
repeat the formalism in order to be self-contained, and in order to
introduce our notation.

The graph and its eigenstates. We consider a graph with V' vertices
which are connected by B undirected bonds. Multiple connections
between vertices and loops from a vertex back to itself are allowed. It
is assumed that the graph is connected. Each bond b is equivalent to
a pair of directed bonds, b = (d, a?) We will use the notation a(d) and
w(d) to refer to the initial and the final vertex of the directed bond d.

A,

Thus we have a(d) = w(d), and the valency of a vertex [ is given by

2B 2B
(2.1) v = Z Ota(d) = Z O1,0(d)
d=1 d=1

The bond lengths are Ly = Ly = L; > 0 and the total length of the
graph is

(2.2) L:ZLb:%ZLd.

With every directed bond d comes a coordinate x4 € [0, Ly measur-
ing the distance from the vertex «(d) along the bond b such that x4
and z; = Lq — x4 denote the same point on b. We study the scaled
Schrodinger equation

(2.3) Vb : (A 4+ E*)op(zg) =0

(k = y/2mFE/h?) with the most general boundary conditions compati-
ble with continuity and current conservation at the vertices,

(2.4) Vi, d with a(d) =i : Y(rg=0)=¢
and
. dip
(2.5) Vi : > ia) pro Aigi (A €[0,00]).
d 4

Following [1] we distinguish (i) Neumann boundary conditions (); = 0),
(ii) mixed b.c. (0 < A; < oo) and (iii) Dirichlet b.c. (\; = o0).
Mixed b.c. reduce to Neumann and Dirichlet for £ — oo and £ — 0,
respectively. For k > 0 the solutions of Egs. (2.3)-(2.5) have the form

(2.6) VYn(2a) = Ana exp(iknza) + A, 5 exp(ik,zg)

where the A, 4 are complex constants which depend on the boundary
conditions. The case £ = 0 will be treated separately in Section 3.
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The bond scattering matriz. The bond scattering matrix of the
graph is defined by
(2.7) S(k) = T(k) D(k),
where S, T and D are unitary matrices of dimension 2B. T is given by

2k
Ty = 504 wld —_— Y — 05 ’
dd (d),w(d") (Ua(d)k + Z)\a(d) d,d )

14 e7*a@
(2.8) = Oa(d),w(d) <T(d) - 6d,d’>
with
(2.9) w;i(k) = 2 arctan A .
Uz'k'

This reduces to w; = 0 and

Neu —
(2.10) Tédl ) = Sa(d), wia) (2v ld) —0gq)

af
for Neumann boundary conditions. D(k) = diaglexp(ikLy)] is a diag-
onal matrix which contains the phases accumulated along the bonds,
(211) Dddl(k) = exp(ide) 5ddl .

We have Dy (0) = I and thus S(0) = T°(0).
For any given k, the bond scattering matrix S(k) can be diagonal-
ized so that

(212) S|a,\) :Z,\‘(Z)\> ()\: 1,...,2B).

z)(k) are the unimodular eigenvalues of S(k) and |ay(k)) the corre-
sponding eigenvectors. Their components will be denoted by ay 4 and
are normalized according to

(2.13) D land*=1.

d
We define two types of eigenphases
(2.14) 2 (k) = e® = el (k)
namely
(2.15) - <Oy <+m
and
(2.16) Ox(k) = 2rmy (k) + 0x(k),

where m, (k) is an integer which is chosen such that (i) all 6,(k) are
continuous as a function of k and (ii) m,(0) = 0. We will assume that
the eigenphases are ordered, i.e., 8y < 6y for A < ). Note that the
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eigenphases 6, (k) can be obtained from a single diagonalization of S
at wave number k while this is not the case for 8 (k).

The convention Eq. (2.15) has been adopted because it is numer-
ically convenient to have the solutions #, = 0 inside the domain of
f rather than at its ends. For a different choice also our final result
Eq. (3.24) below will take a different form.

3. The spectral counting function

Counting function and bond scattering eigenphases. Let us recall
the result of Kottos and Smilansky [1] on the relation between the
bond scattering matrix Eq. (2.7) and the spectrum of the graph. They
showed that k, is in the spectrum if and only if S(k,) has an eigen-
phase 6,(k,) = 0, so that k, is a solution of the secular equation
det(I — S(k,)) = 0. More precisely, from every eigenvector of the bond
scattering matrix |ay(k,)) with 05(k,) = 0 and %k, > 0 one can con-
struct an eigenstate of the Hamiltonian on the graph. This state is
given by Eq. (2.6) with constants that are equal to the components
of |a)) up to an overall normalization factor, A, 4 = cayaq(k,). As a
consequence of this result we have the identity

(3.1)  N(k)=N(0)+ / Tk N 500 0(k) (e — +0).

It is our goal to get rid of the integration in Eq. (3.1) and to express
the counting function in terms of the eigenphases at the limits of inte-
gration, 0 and k.

The ground state for mized b.c. Special care must be taken at £ = 0.
In general, S(k = 0) has eigenvectors with #,(0) = 0 which do not
correspond to eigenstates of the graph. They have the property that
axa = —a, 4 such that the wave function Eq. (2.6) vanishes everywhere.
To understand this in detail we consider Eq. (2.5) and note that for
k = 0 the wave function must be linear on each bond

(32) Vd : w(l'd) = Qsa(d) + d)w(d)L—dgma(d) T
As mentioned above we restrict the discussion to connected graphs.
Then the only solution to this set of equations is the constant ground
state for Neumann b.c., 1/(z4) = L~'/2, which corresponds to a constant
eigenvector ay,q = 1/ V2B of the bond scattering matrix. If \; > 0
for some vertex ¢ this state would violate the boundary conditions and
also a non-constant piecewise linear solution cannot exist due to the
following argument. For such a state there must be one vertex ¢ where

d -
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(i) the wave function is minimal' (Vj : ¢; < ¢;) and (ii) for at least
one vertex j which is connected to ¢ the strict inequality ¢; < ¢; holds
(otherwise the wave function would be constant). Consequently the
sum of derivatives on the r.h.s. of Eq. (2.5) is positive and this equation
implies (besides \; > 0) that the minimal value of the wave function is
positive, ¢; > 0. With analoguous reasoning we find that the mazimal
value of the wave function is negative. The obvious contradiction rules
out any non-constant eigenstates at £k = 0 and thus we can conclude
that N(0) =1 for Neumann b.c. and N(0) = 0 otherwise.

The eigenphases are increasing functions. As a next step we will
show that the eigenvalues of S(k) move clockwise around the unit circle
as k increases. This follows from standard first order perturbation
theory. We write

(3.3) S(k+ k) = S(k) + %M + O(6K?),
(3.4) 2(k + 6k) = z(k) + %5/«: + O(6k?),
(3.5) lax(k + 0k)) = |ax(k)) + O(5k) ,

substitute into Eq. (2.12) keeping only terms of order dk and find the
well-known result

dzy dsS
(3.6) F <GA|%|@A>
which is equivalent to
df, 1 ds
(3.7) % = E (a,\|%\a,\> .

In the case of degenerate eigenphases this remains valid if the |a,) are
chosen as a suitable orthonormal system. For the derivative of S we
have

T D
as dD Td

a — ak” Tk
dTl ) )

IFor mixed b.c. the wave function can be chosen real. Alternatively, for the
sake of this argument, it suffices to consider its real part only.
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and from Eq. (3.7)

d
= (ax\

dk
1 dT
(39) = (w5
It is obvious that the second term is positive since L; > 0. For Neu-
mann or Dirichlet b.c. the first term vanishes as T" does not depend
on k, and for mixed b.c. we will now show that also the first term is
positive. We have

ded’ 1 dwa(d)
3.10 - 5a w(d) ~ TR
(3.10) dk DD 0y dk

DST|G,\> — i(ax|STiS diag(La)|ax)

TT|CL)\> (aA|diag(Ld)|a>\> .

e—iwa(d)

and

1dTr 1dT a0
T = - T*II l
(zdk )dd,, Zd:z dk "

1 1 dwa(d) s
= E — 5& wld)) = _ Wa(d)
7 z[ O vy b ©

1 + e—l—iwa(du)
X [5a(d”),w(d’) (7@ P (5(;,,,,1,)}
«

1 dwa(d)

= —Oold).ald ~Wa(d)
(d), (d)va(d) e €

1+ et™a@
X Z5a(d),w(d') (7 — (5,;”7(1,)
d/

Va(d)

1 dwa(d) e iwa@ [y 1 + etWa(a) 1
v dk o)™,
a(d) a(d)

= —da(d),a(@)

1 dwa(d)

11 = _561 al(d"
(3.11) D)y 3k

In evaluating the sum we have used Eq. (2.1). Coming back to Eq. (3.9),

we have now
dé)\ 2
% = —Za/\d,a,\déa(d Z|a/\d| Ld
1%
1 dw,- %
- - Z v; dk Z Oa(d),i0a(d). i, Oxd T Z |axal” La

dd’
dd’ d
1 dwi
(3.12) = —Z;dk

Uad

2
D da@itng| + Y lardl* La-
d d
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According to Eq. (2.9), w;(k) is a monotonically decreasing function
of k£ for mixed b.c. while it is constant for Neumann and Dirichlet b.c.
Thus the first term is non-negative in general and we can conclude that
all phases are strictly increasing functions of £,

i

1 :
(3.13) VA ke

0.

Total phase and counting function. At given k, let us denote by A_
the number of negative eigenphases ) < 0. Since the eigenphases are
moving clockwise, A_ will decrease by one when an eigenphase crosses
zero so that an additional eigenvalue is found. On the other hand, A
will increase by one whenever an eigenphase reaches 7. According to
the definitions in Egs. (2.15) and (2.16), at these points the eigenphase
gets reinjected from below into the spectrum of S and at the same time
my(k) increases by one. In other words, we have

(314) A_(k) = A_(0) = ) [ma(k) — ma(0)] = [N(k) — N(0)]

or, using m,(0) = 0,
(3.15) N(k) = N(0)+ A_(0) — A_(k) + M(k)
with

(3.16) M(k) =Y ma(k).

Our final step will be to eliminate M (k) from Eq. (3.15) as it cannot be
computed from the numerically available eigenphases 6,(k). For this
purpose we consider the total phase of the bond scattering matrix

(3.17) o) = S 0h),

(3.18) O(k) = iB: 0x(k) .
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From Egs. (2.1), (3.9) and (3.11) and the invariance of the trace of a
matrix under basis transformations we have

d® 1dT ,
= ) (arl5— TTax) + (ax|diag(La)|ax)
A

dk i dk
1dT
= _,_TT> Ly
> (@), v 2
1 dwz-
= =2k 2 e
it d
dwi
1 = - 2L
(3.19) Z =+
and consequently
(3.20) O(k) — 6(0) = —Q(k) + 2(0) + 2kL
with
14
(3.21) k) =) wilk).
=1

According to Eq. (2.9) we have ©(0) = 0 for Neumann b.c. and ©(0) =
V' for mixed or Dirichlet b.c. Eq. (3.20) had been obtained before in
[1] up to the offset at k& = 0 which depends on the precise definition of
the phases 0.

On the other hand we have

Ok) = > (2rma(k) + 0x(k))
(3.22) — 2 M(k) + O(k)
and thus
(3.23) M) = O(0) + Q(0) — O(k) — (k) + 2kL

27
We can now state the identity

(3.24)

N(k) = N(0) + A_(0) — A_(k) + 0(0) + Q(0) @25?) Q(k) + 2k L
which is the main result of this paper. The r.h.s. can be computed from
the eigenphases of the bond scattering matrix at the wave numbers 0
and k. Namely, the sum of the eigenphases yields ©(k) and from the
relative location of the phases with respect to § = 0 we can infer A_(k).
N(0) and (k) are explicitly known from the boundary conditions of
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the graph. Eq. (3.24) allows one to obtain from this information the
spectral counting function of the Hamiltonian on the graph.

4. Numerical considerations

We illustrate Eq. (3.24) for a fully connected graph with V' = 4
vertices (tetrahedron). We plot as a function of k£ the 12 eigenphases
(k) of the bond scattering matrix and the counting function N (k).
This is done for Neumann and mixed b.c in Figs. 1 and 2, respectively.
The counting function has been calculated from Eq. (3.24) without
using information about the spectrum of the graph. Indeed we observe
jumps by one whenever one of the eigenphases vanishes (dashed vertical
lines).

Note that in both cases the graph has several degenerate eigen-
phases #, = 0 at £ = 0. Due to numerical inaccuracies some of their
numerical approximations may be small negative numbers and there-
fore some care must be taken in the determination of the offset value
A_(k = 0) (for example, A_(0) = 5 in Fig. 1). However, this step is
easily verified by checking that for sufficiently small €, N(g) equals the
known value of N(0) =1 (Neumann) or N(0) = 0 (mixed b.c.).

Numerically it may also be a problem to distinguish between 6, ~
—m or 0\ =~ +7 when z) = —1. However, the counting function will not
be affected by such errors since they leave A_(k)+©(k)/2m unchanged.

L@ y | o® | S
/ 7 16 | igh

12 +

im0 N(K)
8 L fI—

4 L —

1 f / 0 . . .
0 4 8 12 16 20 0 4 8 12 16 20
k k

FIGURE 1. (a) The eigenphases of the bond scattering
matrix of a fully connected graph with V' = 4 vertices and
Neumann b.c. are shown with bold lines. Eigenenergies
of the graph Hamiltonian correspond to wave numbers
k where any of these phases vanishes. These values &,
are indicated with vertical dashed lines in (a) and in (b).
The spectral counting function as predicted by Eq. (3.24)
is shown with a bold line in (b).
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@ | | (b)

7 ) % o —
o L L
g / 12t =l ]
eim 0 N(k)
¥ 8 —
% /’/// / ___
3 // s .
-1 . . . 0 _\_ . .
0 4 8 12 16 20 0 4 8 12 16 20

k K
Ficure 2. As Fig. 1 but with mixed b.c. A; = 100.

In principle it is possible to determine the exact location of the
eigenvalues by searching for the points where Eq. (3.24) jumps (ex-
act up to the precision in the diagonalization of S(k)). However, this
would not be a very efficient strategy. Rather one can use Eq. (3.24)
to determine an interval in which exactly one eigenvalue of the graph
is contained and then converge to this root using any standard root-
searching method and any secular function. In this way the iteration
of the solution does not necessarily require additional diagonalizations
of the large bond scattering matrix. Note that the direct application of
Eq. (3.24) is also not the best strategy in the search for a suitable ini-
tial approximation to the eigenvalue k, since knowledge of the discrete
counting function N (k) alone gives no clue how far £ is from k,,. Rather
we can make use of Eq. (3.24) in order to select the particular eigen-
phase 6,1y (k) which is responsible for the eigenvalue k,. Namely, we
have

(4.1) p(n, k) =1+A_(k)+N(k)—n,
where the index p refers here to the sorted eigenphases (instead of
sorting 0). The equation 65, ; (k) = 0 has exactly one real root k = k,

and it is safe to search for this root using a standard routine which will
make efficient use of all previously computed function values.

5. Summary and discussion

I have presented a non-standard way to calculate the spectral count-
ing function of the Hamiltonian on a quantum graph which does not
involve knowledge of any eigenenergies. Instead it suffices to diagonal-
ize the bond scattering matrix at the wave number where the counting
function is required. I hope that this result will be of use when one mod-
els extended structures which are so complex that even the numerical
treatment of the corresponding quantum graph is non-trivial. In fact I
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have successfully used Eq. (3.24) in order to speed up the calculation
of eigenvalues in connection with a number of previous publications
[6, 7, 8]. Clearly the problem of nearly degenerate levels, which was
avoided in this way, is more relevant for graphs where level repulsion is
weak and small spacings have a high probability, e. g. extended graphs
with localized states or energy bands [7, 8]. At the same time these are
the systems for which the difference in the dimensions of the matrices
S(k) and h(k) is just a factor which is independent of the graph size
(e. g. 2B/V =4 for a square lattice). In contrast, for fully connected
graphs S(k) has dimension ~ V2 and there is relatively strong level re-
pulsion. Therefore the numerical advantage of using Eq. (3.24) should
be lowest in fully connected graphs.

The present paper was restricted to the Schrédinger operator on
graphs and to boundary conditions which require continuity of the
wave function across the vertices, but it should be possible to obtain
an analogue of Eq. (3.24) also for more general situations. In fact the
crucial ingredient is a sufficiently accurate estimate of the total phase
O(k) of the unitary scattering matrix which is used to formulate the
quantization condition. In the present case this is Eq. (3.20), which is
an identity. However, in other systems where the semiclassical approx-
imation is not exact one only needs an accuracy which ensures that the
integer M (k) can be determined without uncertainty. In fact an exam-
ple for such a situation has been given in the context of the scattering
approach to the quantization of the Sinai billiard [9, 10]. In general
the requirement is that the auxiliary scattering system has only a fi-
nite number of trapped primitive periodic orbits since each one of them
contributes an oscillatory term to the total phase. In the case which
was discussed here the scattering system is a formal one and does not
correspond to a physically relevant scattering setup. Therefore we en-
countered the exceptionally simple situation that there are no trapped
periodic orbits at all and ©(k) is a smooth function of energy.
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