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Summary. We consider phase-space correlations in the Husimi densities of eigen-
states of quantum chaotic systems. It is explained that the existence of such correla-
tions follows from the validity of short-time Gaussian wave packet dynamics. Using
this semiclassical approximation and some results from random-matrix theory we
derive an expression for the correlation coefficient of the Husimi densities at two
different points in phase space which are connected by a short classical trajectory.
An explicit expression for this correlator is given for the case of a single iteration of
the quantum kicked rotator.

1 Introduction

Wave packet propagation is the most straightforward approach to a semiclas-
sical description of quantum dynamics. The main idea is due to Heller [1].
One approximates a quantum state by a wave packet with a predefined shape
that depends on a few classical parameters only. For example this could be
a Gaussian in phase space with given mean values and widths for position
and momentum. One can then derive classical equations of motion for these
parameters although they do account at least partially for quantum effects
like the uncertainty principle. Of course the choice of the wave packets is
somewhat arbitrary, and it may require a fair amount of physical insight to
identify for a given problem the relevant parameters and to find the optimal
compromise between accuracy and numerical tractability. The latter is an
important issue when large systems of interacting particles are of interest,
and this is probably the most important field for applications of wave packet
dynamics. An example is the problem of a partially ionized hydrogen plasma
which was studied by Werner Ebeling and his students some 10 years ago [2,3].
Fortunately I was also part of his group around that time, and thus Werner
Ebeling introduced me to the subject of wave packet dynamics in a number of
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discussions. Unfortunately, however, it took almost ten years before I finally
managed to apply this lesson to my own field of research, namely quantum
chaos. It turns out that simple Gaussian wave packet dynamics can provide
valuable information about long-distance correlations in the stationary states
of quantum chaotic systems [4]. In the present contribution we will further
develop this novel application of wave packet dynamics.

Fig. 1. Time evolution of a quantum state for the modified kicked rotator with
k = 7.5 and N = 512 in Husimi representation. (a) An initial coherent state at
ξ0 = (x0, p0) = (0.33, 0.435) is prepared. The phase space points ξt marked in (b)-
(e) are the classical iterates of this point. (b) At t = 1 the state is still approximately
Gaussian and centered at ξ1. (c) t = 2: The state is exponentially stretched along the
unstable manifold of the trajectory and begins to deviate strongly from a Gaussian
shape (ellipse). (d) t = 4: The state is folded back into the unit cell several times
and begins to develop a complicated structure. (e) t = 8: The quantum state covers
the whole available phase space. (f) For comparison a random state is shown in
Husimi representation.

In quantum chaos [5] one deals with quantum systems in the semiclas-
sical limit where the number of relevant basis states N ∼ ~

−d (the volume
ratio between the classically accessible part of phase space and a Planck cell)
diverges and still quantum effects remain important. One would like to un-
derstand in detail how the classical and the quantum dynamics are related in
this regime, in particular in a situation where the classical dynamics is chaotic
and thus intrinsically unstable. Gaussian wave packet dynamics becomes ex-
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act in the semiclassical limit N → ∞ if one considers the dynamics over a
given finite time t. On the other hand, for any finite value of N this trivial
quantum-classical correspondence breaks down after a relatively short time
t∗ ∼ λ−1 lnN if the classical dynamics is chaotic with Lyapunov exponent λ.
In the semiclassical limit N → ∞ this time scale is much shorter than the
Heisenberg time tH ∼ N , which marks the transition to a quasiperiodically
recurrent dynamics that is due to the discreteness of the quantum spectrum.

Fig. 1 illustrates this behavior for the so-called quantum kicked rotator
that will be introduced in Section 3 and serves as our model for Hamiltonian
chaos. Repeated application of the quantum propagator generates a sequence
of states |ψt〉 whose phase-space densities are shown in Figs. 1a-e. In this
Husimi representation any Gaussian wavepacket results in an elliptic density
distribution, and coherent states like the initial wavepacket in Fig. 1a appear
circular. Gaussian wavepacket dynamics assumes that all time-evolved states
are Gaussian, but the figure shows that this is qualitatively wrong for t ≫ 1
despite the small effective value of Planck’s constant. Due to classical chaos,
the wave packet is first stretched exponentially along its unstable direction
and then folded back into the unit cell several times. This gives rise to a
complicated structure which cannot anymore be described by just a few pa-
rameters. After some additional iterations of the quantum propagator the
state covers the whole available phase space and looks qualitatively similar to
the random state1 shown in Fig. 1f. We conclude that wave packet dynamics
provides only a very limited insight into the quantum dynamics of chaotic
systems.

Fig. 2. Husimi projection of two selected eigenstates of the modified kicked rotator.
The point (x1, p1) denoted by t = 1 is the classical iterate of the point (x0, p0). Both
points are close to a maximum (a) or minimum (b) of the eigenstate, respectively.

1 For this state, the N amplitudes in position representation were chosen as complex
random numbers. Subsequently the state was normalized.
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Of course the complete information about the quantum dynamics is con-
tained in the eigenvalues and eigenfunctions of the Hamiltonian. Fig. 2 shows
two typical examples for the kicked rotator. On first sight these states appear
to be very similar to the random state of Fig. 1f. In fact this observation
agrees with the prediction of random-matrix theory (RMT) which has been
the main theoretical tool for the statistical analysis of quantum systems with
chaotic classical analogue for more than 20 years [5]. Within RMT one re-
places the Hamiltonian by a random matrix drawn from a suitable ensemble
and can then calculate many physically relevant quantities from an average
over this ensemble. Despite the great success of this approach one may loose
important physics if all system-specific properties are neglected in this way.
For example, although the eigenstates of Fig. 2 have nothing in common with
localized wave packets, the validity of wave packet dynamics for short times
represents a system-specific constraint on these states. It results in a correla-
tion between the intensities of an eigenstate at different points in phase space
which would not be expected within RMT. Qualitatively we can understand
this effect as follows: Suppose that by chance an eigenstate has a high in-
tensity at some point ξ0 = (x0, p0). For example, this is the case in Fig. 2a
for the spot denoted by t = 0. We can think of an additional localized wave
packet superimposed on the fluctuating background of the eigenstate. From
wave packet dynamics we expect that in the course of time this additional in-
tensity is transported to a different location in phase space, namely ξ1 (t = 1)
in Fig. 2a. On the other hand, up to an irrelevant phase, the eigenstate is
invariant under time evolution. Therefore the state must have a high intensity
also at ξ1 and this is confirmed in Fig. 2a. ¿From a similar argument we can
conclude that low intensities at ξ0 and ξ1 tend to coincide (Fig. 2b) and, more
generally, that the intensities along a short classical trajectory are correlated.

A quantitative theory for these correlation was outlined and numerically
confirmed in [4]. Here it is our purpose to give a detailed derivation of the
results presented there. We will first reduce the calculation of the Husimi
correlator along a classical trajectory to the propagation of a Gaussian wave
packet (Section 2). Although this step does not rely on a specific model sys-
tem, chaotic classical dynamics is implicitly assumed as we make use of some
results from random-matrix theory. Then we derive in Section 3 explicit ex-
pressions for the propagation of Gaussian wave packets in kicked Hamiltonian
systems and simplify them in the special case for which numerical results were
presented in [4] (propagation of a coherent initial state over a single time pe-
riod of the kicked rotator). Finally we end with some concluding remarks in
Section 4.
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2 The Husimi correlator

In this section we give a quantitative derivation of the correlations in the
Husimi densities of eigenstates at two different points ξ0 and ξt in phase space
which are connected by a short classical trajectory of length t. We denote the
(effective) dimension of the Hilbert space by N and consider the N eigenstates
of the quantum propagator over time t,

Û t|n〉 = eiλnt|n〉 . (1)

These states form a complete orthonormal basis, Î =
∑N
n=1 |n〉〈n|. An average

over the eigenstates will be denoted by 〈·〉n.
In order to map quantum states into the classical phase space we introduce

coherent states |ξ0〉 by their position representation

〈x|ξ0〉 = (~π)−1/4 e−(x−x0)
2/2~+ip0(x−x0)/~ . (2)

These are minimum uncertainty wave packets centered at ξ0 = (x0, p0) with
equal widths in position and momentum. They are normalized but not orthog-
onal and provide an overcomplete basis. The Husimi density of an arbitrary
quantum state |ψ〉 at a point ξ in phase space is defined as

Hψ(ξ) = |〈ξ|ψ〉|2 . (3)

We consider the Husimi densities of the eigenstates |n〉 (Fig. 2). The mean
value of this density is

〈Hn(ξ)〉n = N−1
N

∑

n=1

〈ξ|n〉〈n|ξ〉 = N−1 , (4)

if we fix the point ξ and average over n. The fluctuations around the mean,

δHn(ξ) = Hn(ξ) −N−1 , (5)

will be the object of our interest. As a measure for the correlation of the
Husimi densities at two different phase-space points ξ and ξ′ we consider the
correlation coefficient (normalized covariance)

CH(ξ′; ξ) =
〈δHn(ξ) δHn(ξ

′)〉n
√

〈δ2Hn(ξ)〉n〈δ2Hn(ξ′)〉n
. (6)

Such correlations exist trivially if ξ and ξ′ are very close in phase space since
then the corresponding coherent states have a big overlap. Moreover, accord-
ing to the arguments given in the introduction, correlations are expected along
short classical trajectories between the density H0,n = Hn(ξ0) at a point ξ0
and the density Ht,n = Hn(ξt) at its iterate ξt. In order to calculate this
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correlation we consider the time evolution of |ξ0〉. For short times t . t∗

this yields a wave packet which is localized in the vicinity of ξt (Fig. 1). We
decompose this wave packet into two contributions,

Û t|ξ0〉 = at|ξt〉 + rt|ρt〉 , (7)

namely the coherent state |ξt〉 and a remainder |ρt〉. This is a normalized state
which is not explicitly specified but orthogonal to |ξt〉, 〈ρt|ξt〉 = 0. Therefore
the expansion coefficients satisty

|at|2 + |rt|2 = 1 . (8)

Due to the orthogonality of the two states we can also assume that the pro-
jections

ξt,n = 〈n|ξt〉 (9)

ρt,n = 〈n|ρt〉 (10)

of an eigenstate |n〉 on |ξt〉 and |ρ〉 have independent statistics,

P (ρt,n, ξt,n) = P (ρt,n)P (ξt,n) . (11)

This random-matrix type assumption is expected to hold in the semiclassical
limit unless ξt is close to a short periodic orbit or a symmetry line, see [4] for a
brief discussion of such exceptional points. We can now multiply the identity

H0,n = |〈n|ξ0〉|2 (12)

= |〈n|Û t|ξ0〉|2 (13)

= |〈n|atξt〉 + 〈n|rtρt〉|2 (14)

= |at|2 |ξt,n|2 + 2ℜ a∗t rtξ∗t,nρt,n + |rt|2|ρt,n|2 (15)

with Ht,n = |ξt,n|2 and average over n. Then the first term can be expressed
in terms of the inverse participation number (IPR) in Husimi representation
and gives |at|2N−1It. Here, the IPR is defined as

It =
∑

n

H2
t,n =

∑

n

|〈n|ξt〉|4 (16)

and has the following basic property: We have It = 1 if the coherent state |ξt〉
is an eigenstate of the propagator and It = N−1 ≪ 1 if this state is euqally
distributed over all eigenstates. In general N−1 ≤ It ≤ 1 can be considered
as a measure for the localization of |ξt〉 in the eigenbasis |n〉.

The second term of Eq. (15) vanishes upon averaging since, according to
Eq. (11), the phases from ξ∗t,n and ρt,n are uncorrelated. Also the third term
factorizes and gives
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〈|ξt,n|2 |rt|2|ρt,n|2〉n = 〈|ξt,n|2〉n |rt|2〈|ρt,n|2〉n (17)

= N−2 |rt|2 (18)

= N−2 (1 − |at|2) (19)

where we have used that the eigenstates |n〉 form a complete basis and also
Eq. (8) for the last line. Hence we find

〈H0,nHt,n〉n = N−1|at|2It +N−2 (1 − |at|2) (20)

and further

〈δH0,n δHt,n〉n = 〈H0,nHt,n〉n −N−2

= |at|2N−1(It −N−1) . (21)

Moreover we have

〈δ2Ht,n〉n = 〈H2
t,n〉n −N−2

= N−1(It −N−1) . (22)

After substitution of these results we find for the Husimi correlator

CH(ξ0; ξt) =
〈δH0,n δHt,n〉n

√

〈δ2H0,n〉n〈δ2Ht,n〉n

= |at|2
√

It −N−1

I0 −N−1
. (23)

Further progress relies now on another result from random-matrix theory,
according to which we have the estimate I = 2N−1 for an arbitrary state.
Deviations from this result have beenn studied in the past by Heller, Kaplan
and others [6]. It was found, that enhanced localization (higher values of
the IPR) are found in the vicinity of short periodic orbits with relatively low
Lyapunov exponent. However, in our case this scarring effect is not important
for two reasons: (i) We must exclude the vicinity of short periodic orbits
anyway since there factorization Eq. (11) cannot be justified and (ii) if ξ0 is
close to a short periodic orbit so is ξt. Thus we can assume I0 = It and
end up with a very simple estimate for the Husimi correlation along short
trajectories,

CH(ξ0; ξt) = |at|2 = |〈ξt|Û |ξ0〉|2 . (24)

Now the connection between eigenfunction statistics and Gaussian wave
packet dynamics is obvious. In order to obtain an explicit expression for
the phase-space correlator, one has to approximate the time evolution of a
Gaussian wave packet (a coherent state) and to project the result to another
Gaussian. We will do this in the following section for a specific model system.
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3 The kicked rotator

In this section we consider a particle that is periodically forced by very short
pulses such that the Hamiltonian can be written as

H(p, x, t) = T (p) + V (x)

+∞
∑

n=−∞

δ(t− n) (25)

with T (p) = p2/2 (kinetic energy) and

V (x) =
k

(2π)2

[

cos
απ

2
cos 2πx+

1

2
sin

απ

2
sin 4πx

]

(26)

(potential energy). For historical reasons this model is called modified kicked
rotator. Due to the special time dependence in Eq. (25) the classical dynamics
reduces to a simple map ξn+1 = T ξn for position and momentum right after
the kicks. Explicitly it is given by

xn+1 = xn + T ′(pn) (27)

pn+1 = pn − V ′(xn+1) . (28)

In addition to the time-periodic forcing, the phase space is periodic in position
and momentum too. We have choosen dimensionless variables p, x, t such
that all periods are unity, i.e., we can restrict Eqs. (27), (28) to the unit torus
x + 1 ≡ x and p + 1 ≡ p. For α = 0 Eqs. (27), (28) are Chirikov’s standard
map [7] which is one of the most prominent paradigms of Hamiltonian chaos.
However, for our purpose it is useful to set α = 0.1 in order to break an
unwanted symmetry. Moreover we use k = 7.5 for all numerical calculations
since then the classical dynamics of the model is completely chaotic. Quantum
mechanically the system is described by the time evolution operator over one
period

Û = e−i V (x̂)/~ e−i T (p̂)/~ . (29)

The convenient factorization into two terms depending on position and mo-
mentum, respectively, is again a consequence of the δ-kicks [8]. In Eq. (29) ~

is a dimensionless constant which accounts for the ratio between the phase-
space volume and Plancks constant. We assume ~ = 2π/N in order to ensure
that Û is periodic in x and p. For this choice N is the effective dimension of
the Hilbert space, and hence also the dimension of the unitary operator Û .

A general Gaussian state for a one-dimensional model like the kicked ro-
tator has in position representation the form

g(x0, p0,∆x,∆p,N , s;x) = N exp

(

−A(∆x,∆p, s)(x− x0)
2 + i

p0(x− x0)

~

)

(30)
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with

A(∆x,∆p, s) =
1 + 2si

~

√

∆2
x∆

2
p −

(

~

2

)2

4∆2
x

. (31)

The parameters x0, p0 and ∆2
x,∆

2
p are the expectation values and variances

of position and momentum, respectively. For a normalized wave packet the
complex prefactor N = |N |eiγ has modulus |N | = (2π∆2

x)
−1/4. γ is an overall

phase. This phase and the sign s = ±1 do not influence the physical properties
of the wave packet. In momentum representation we have for the same state

g̃(x0, p0,∆x,∆p,N , s; p) = Ñ exp

(

−Ã(∆x,∆p, s)(p− p0)
2 − i

x0(p− p0)

~

)

(32)
where

Ã(∆x,∆p,+s) = A(∆p,∆x,−s) (33)

and

Ñ =
N√
2A~

e−ix0p0/~ =
ei(γ−x0p0/~−arg(A)/2)

(2π∆2
p)

1/4
(34)

For coherent states the imaginary part in Eq. (31) is zero, and hence the sign
s is immaterial.

We wil now approximate the action of the quantum propagator Û t on a
Gaussian wave packet. For this purpose we assume that the width in both,
position and momentum, is ∼ ~ and thus for ~ → 0 much smaller than
any classical scale. Then we can expand V (x) and T (p) around the point
(x0, p0) where the wave packet is centered. If the expansion is restricted to
the quadratic approximation

T (p) ≈ T0 + T ′

0(p− p0) +
T ′′

0

2
(p− p0)

2

V (x) ≈ V0 + V ′

0(x0)(x− x0) +
V ′′

0

2
(x− x0)

2 (35)

(with T0 ≡ T (x0), T
′

0 ≡ T ′(x0), . . . ) the wave packet remains Gaussian.
However, its parameters are modified in the following way. After applying the
operator related to the free propagation between the kicks (the second term
in Eq. (29)) we have

e−(i/~)T (p)g̃(x0, p0,∆x0,∆p0,N01, s0; p) ≈ g̃(x1, p0,∆x1,∆p0,N01, s01; p) ,
(36)

i.e., mean and variance of p are unaffected, while the mean position moves
in agreement with the classical dynamics Eq. (27) to x1 = x0 + T ′

0 and an
additional overall phase is acquired, N01 = N0 e

−(i/~)T0 . Moreover we find
the equation

−s01
√

∆2
x1∆

2
p0

− (~/2)2 = −s0
√

∆2
x0∆

2
p0

− (~/2)2 +∆2
p0
T ′′

0 (37)
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which determines the new variance in x-direction (and also the sign s01).
Namely we have

∆2
x1 = ∆2

x0 − 2s0T
′′

0

√

∆2
x0∆

2
p0

− (~/2)2 +∆2
p0

[T ′′

0 ]2 . (38)

Repeating the same argumentation for the kick (the first term in Eq. (29)) we
find

e−(i/~)V (x) g(x1, p0,∆x1,∆p0,N01, s01;x)

≈ N01e
−(i/~)V1 e−[A(∆x1,∆p0

,s01)+i V
′′

1
/2~](x−x1)

2

ei[p0−V
′

1
] (x−x1)/~

= N1 g(x1, p1,∆x1,∆p1,N1, s1;x) . (39)

This leads to N1 = e−(i/~)V1N01, p1 = p0 − V ′

1 and

∆2
p1

= ∆2
p0

+ 2s01V
′′

1

√

∆2
x1∆

2
p0

− (~/2)
2

+∆2
x1 [V ′′

1 ]2 . (40)

Eqs. (38), (40) together with the classical equations of motion Eqs. (27), (28)
and the transformation rules for the overall prefactor N and sign s represent
a complete set of (classical) equations for the propagation of a wave packet in
Gaussian approximation.

For the kicked rotator we have T ′′ = 1. Assuming a coherent initial state
with ∆2

p0
= ∆2

x0 = ~/2 the equations for the transformed widths simplify to

∆2
x1 = ~

∆2
p1

=

[

(

V ′′

1 − 1

2

)2

+
1

4

]

~ (41)

and we have s1 = sgn
(

V ′′

1 − 1
2

)

. Finally we find for this special case

A(∆x1,∆p1, s1) =

1 + 2s1i
~

√

[

(

V ′′

1 − 1
2

)2
+ 1

4

]

~2 −
(

~

2

)2

4~

=
1 + 2i(V ′′

1 − 1
2 )

4~
. (42)

With this result the calculation of the correlator Eq. (24) has been reduced
to a simple Gaussian integration and we obtain the explicit expression

CH(ξ0; ξ1) =

√

8

9 + [2V ′′(x1) − 1]2
(43)

which successfully compares to numerical data [4].
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4 Conclusions

Quantum chaotic systems combine aspects of dynamical randomness with
model-specific features that reflect the underlying deterministic classical dyan-
mics. We studied this relation for the case of phase-space portraits (Husimi
densities) of chaotic eigenstates and found that semiclassical considerations
(Gaussian wave packet dynamics) require certain correlations which would
not be expected from random-matrix theory. On the other hand, in order to
estimate these correlations analytically, we had to employ assumptions from
RMT. In other words, our strategy to describe a chaotic eigenstate is to use
RMT whenever there is no “obvious” reason why it should fail. Clearly, this is
only a pragmatic approach which lacks a solid justification but is unavoidable
as long as there is no complete semiclassical theory for chaotic eigenstates (or,
equivalently, for the quantum dynamics beyond the Heisenberg time). For the
kicked rotator the results of this “hybrid” method have been confirmed nu-
merically in [4] and we expect similar agreement also in other models such
as quantum billiards. Moreover, an analogous strategy had been employed
earlier by Kaplan and Heller in order to account for scarring on short periodic
orbits [6].

The phase-space correlations which we are describing in the present con-
tribution are semiclassically strong and long range in the sense that (i) the
correlator does not decay to zero in the semiclassical limit and that (ii) the
correlated points can have an arbitrarily large separtion in phase space as long
as they are connected by a classical trajectory which is shorter than the time
t∗ for quantum classical-correspondence. This is an important difference to
eigenstate correlations in other representations, in particular to spatial corre-
lations which are experimentally easier accessible and thus received a lot of
attention in the past. Some potential applications for phase-space correlations
have been pointed out in [4].
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