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Abstract
We apply the framework developed in the preceding paper in this series (Smilansky 
2017 J. Phys. A: Math. Theor. 50 215301) to compute the time-delay distribution 
in the scattering of ultra short radio frequency pulses on complex networks of 
transmission lines which are modeled by metric (quantum) graphs. We consider 
wave packets which are centered at high wave number and comprise many energy 
levels. In the limit of pulses of very short duration we compute upper and lower 
bounds to the actual time-delay distribution of the radiation emerging from the 
network using a simplified problem where time is replaced by the discrete count 
of vertex-scattering events. The classical limit of the time-delay distribution is 
also discussed and we show that for finite networks it decays exponentially, with 
a decay constant which depends on the graph connectivity and the distribution of 
its edge lengths. We illustrate and apply our theory to a simple model graph where 
an algebraic decay of the quantum time-delay distribution is established.

Keywords: quantum scattering, time-delay, quantum graphs

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Motivations

When an ultra-short pulse of radiation is scattered on a complex medium, the emerging radia-
tion pulse is broadened in time and the pulse shape reflects the distribution of time-delays 
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induced in the scattering process. This distribution can be intuitively explained as due to the 
existence of a large number of paths of varying lengths through which the radiation can tra-
verse the scatterer. Recently, novel methods to produce ultra-short light pulses were intro-
duced. They opened a new horizon for experiments where the distribution of delay-times 
induced by scattering from complex targets can be measured, with interesting and surpris-
ing results, see e.g. [2–4]. The ultra-short pulses are realized as broad-band coherent wave 
packets, which are presently available only for electromagnetic radiation, but not yet for sub-
atomic particles such as e.g. electrons. However, work towards this end has already begun [5]. 
These developments emphasize the need for theoretical tools to aid planning of new experi-
ments and interpret the measured results.

The preceding paper in this series [1] presented a general theoretical framework for the 
computation of the delay-time distribution in scattering of short radiation pulses on complex 
targets. The ingredients which are needed in this theory are the scattering matrix S(k) where k 
is the wave-number, the pulse (wave-packet) envelope ω(k) and the dispersion relation E(k). 
For scattering of electromagnetic radiation the latter is E(k) = ck where c denotes the velocity 
of light. In this case it is convenient to express the time by the optical path-length s  =  tc. The 
general expression for the delay-time distribution is then given by

Pf ,i(s) =
1

2π

∣∣∣∣
∫ ∞

0
dk ω(k)Sf ,i(k)e−iks

∣∣∣∣
2

 (1)

if the delay is measured for pulses impinging in channel i and detected in channel f.
In the present paper, we apply this general formalism to scattering on quanum graphs 

[6–10]. We do so for two reasons: first, quantum graphs are known as a successful paradigm 
for scattering from complex targets while at same time they are analytically and numerically 
much more tractable. For example we will present in this paper a full analytic solution of a 
model which contains some essential ingredients for complex targets such as an exponetially 
increasing number of scattering trajectories and relevant quantum interferences between them. 
Thus, studying quantum graphs in the present context might reveal typical features which are 
difficult to decipher in more realistic systems. Second, quantum graphs are very good models 
for the scattering of radio frequency (RF) signals in networks of wave-guides. As a matter of 
fact, experiments on the delay-time distribution in such systems are presently performed in 
Maryland and Warsaw [11, 12].

1.2. Outline

In the following section 1.3 the necessary definitions and tools from the theory of quantum 
graphs will be provided. Then in section 1.4 this theory will be extended to scattering on 
graphs and an explicit formula for the scattering matrix Sf,i will be discussed. In section 2 we 
apply this formula to equation (1) and derive on this basis approximate expressions for the 
delay-time distribution in the case of broad envelope functions ω(k) corresponding to wave 
packets narrow in time.

Section 3 is devoted to the classical analogue of the delay-time distribution. In particular we 
show that for finite and connected graphs the classical delay distribution decays exponentially 
for long times and calculate the decay exponent. The classical delay distribution provides both, a 
simple short-time approximation to the fully coherent expression (1) and a reference result which 
allows to highlight quantum interference contributions to (1) for longer times. Moreover, as in the 
above mentioned experiments with RF radiation some decoherence cannot be avoided, a satisfac-
tory theory might involve a crossover between our results for coherent and incoherent time-delay.
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In the final section 4 we apply all our results to a simple model system which consists 
of two edges and a single scattering channel. For this model we can also confirm the results 
of section  2 by an independent calculation based on the distribution of narrow scattering 
resonances.

1.3. Quantum graphs in a nut-shell

A graph G(V , E) consists of a finite set of vertices V , |V| = V  and edges E , |E| = E. It will 
be assumed that G  is connected and simple (no parallel edges and no self connecting loops). 
The connectivity of G  is encoded in the V × V  adjacency matrix A: Au,v  =  1 if the vertices 
u, v ∈ V  are connected and Au,v  =  0 otherwise. The set of edges connected to the vertex v is 
denoted by S(v). The degree of the vertex v is dv = |S(v)|. When Au,v  =  1, the connecting 
edge e = (u, v) will be endowed with two directions � = ±, the positive direction is chosen 
to point from the lower indexed vertex to the higher. A pair d = (e,�) is a directed edge. The 
set of all directed edges will be denoted by D and D = |D| = 2E is its size. The reverse of d 
is denoted by d̂ = (e,−�). When d is a directed edge pointing from vertex u (the origin of d) 
to v (the terminus of d) we write u = o(d) and v = t(d), respectively.

An alternative way to describe the connectivity of G  is in terms of the edge adjacency 
matrix of dimension D × D :

Bd,d′ = δo(d),t(d′), d, d′ ∈ D . (2)

The metric endowed to the graph is the natural one-dimensional Euclidian metric on every 
edge. The length of an edge e is denoted by Le and L = [Le]

E
e=1 is the set of these edge lengths. 

The edge lengths Le are assumed to be rationally independent. A graph is compact when all 
the edge lengths Le are finite. The lengths of the directed edges d and its reverse d̂  are equal. 
Denote by xe the coordinate of a point on the edge e, measured from the vertex with the smaller 
index and 0 � xe � Le. A function F : x ∈ G → R is given in terms the functions [ fe(xe)]

E
e=1 

so that if x ∈ e, F(x) = fe(x). The action of the Laplacian on F(x) for x ∈ e is ∆GF = −∂2fe
∂x2

e
 

and the domain of the Laplacian is fe(xe) ∈ C2(0, Le), ∀e. Assume G  is compact. Then, the 
Laplacian is self-adjoint if it acts on a restricted space of functions F(x) which satisfy appro-
priate boundary conditions. Frequently used boundary conditions are the Neumann condi-
tions which require the function F to be continuous at all the vertices, and for every vertex, ∑

e∈S(v)
∂fe(xe)
∂xe

|v = 0, where the derivatives at v are taken in the direction which points away 

from v. The most general prescriptions for boundary conditions were first introduced and dis-
cussed in [13]. The time dependent wave equation (with time s/c) is

∂2

∂s2 F(x, s) = ∆GF(x, s) (3)

with the boundary conditions specified above which must be satisfied for all s. The stationary 
equation

∆GF(x, k) = k2F(x, k), (4)

can be solved only for a discrete, yet infinite set of wave numbers [kn]n∈Z which is the spec-
trum of the stationary wave equation.

A useful method of computing the spectrum of the graph Laplacian is based on the following 

decomposition of the wave function. Consider the functions fe(xe) = adei�kxe + ad̂ei�k(Le−xe), 
where d = (e,�) and ad, ad̂ are arbitrary complex numbers. These functions are the general 
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solutions of −∂2fe
∂x2

e
= k2fe(xe) on all the edges. The constants should be computed so that 

F(x) satisfies the boundary conditions at all the vertices. Consider all the edges which are 

connected to a vertex v : e ∈ S(v). For Neumann boundary conditions the continuity of the 
graph wave function at the vertex v imposes dv  −  1 independent requirements on the coeffi-
cients ad. Namely, fe|v = fe′ |v∀e �= e′ ∈ S(v), where fe|v  denotes the value of fe at the vertex 
v, where xe  =  0 or xe = Le depending on the orientation of d. Again for Neumann boundary 
conditions, another relation among the ad is imposed by the requirement that the sum of 
the outgoing derivatives of the fe at the vertex vanishes. Therefore there are dv linear equa-
tions which the 2dv coefficients must satisfy. Hence, if one denotes the set of directed edges 
which point towards v by S−(v) and the complementary set of outgoing directed edges by 
S+(v), then the boundary conditions at v provide a linear relation between the two subsets 
of coefficients:

ad =
∑

d′∈S−(v)

σ
(v)
d,d′ad′ , ∀d ∈ S+(v), with σ

(v)
d,d′ =

2
dv

− δd,d̂′ . (5)

The symmetric and unitary matrix σ(v) of dimension dv is the vertex scattering matrix corre-
sponding to Neumann boundary condition at the vertex. Other boundary conditions yield dif-
ferent vertex scattering matrices, and their unitarity is due to the fact that the underlying graph 
Laplacian is self adjoint. Using the vertex scattering matrices for all the vertices on the graph, 
one can construct a D × D unitary matrix

Ud,d′(k) = δo(d),t(d′)eikLdσ
(o(d))
d,d′ , d, d′ ∈ D, (6)

which acts on the D dimensional space of complex coefficients ad. It then follows [6, 7] that 
the spectrum of the graph Laplacian is obtained for values of k which satisfy the secular 
equation

det[I(D) − U(k)] = 0, (7)

where I(D) is the unit matrix in dimension D. The unitarity of U(k) for real k implies that all 
the eigenvalues of U(k) are on the unit circle. As k varies, eigenvalues cross the real axis, 
where the secular equation is satisfied. 

U(k) is referred to as the graph evolution operator in the quantum chaos literature. Its 
matrix elements provide the amplitudes for scattering from an edge d directed to a vertex v, to 
an edge d′ directed away from v. Their absolute squares can be interpreted as the probabilities 
that a classical particle confined to the graph and moving on the edge d toward the vertex v is 
scattered to the edge d′ and moves away from it. Due to the unitarity of U the D × D matrix M

Md,d′ = |Ud,d′ |2, d, d′ ∈ D, (8)

is double Markovian: 
∑

d Md,d′ =
∑

d′ Md,d′ = 1. The transition probability matrix M allows 
to define a random walk on the graph. For the graphs considered here, M satisfies the condi-
tions of the Frobenius–Perron theorem and therefore the largest eigenvalue of M is 1 and it 
is single. Suppose that at time 0 the probability distribution to find the walker on the directed 
edge d is given by the vector pd(t = 0), ∀d ∈ D. Then, at integer time t  >  0 the distribution 
will be p(t)  =  Mtp(0) and converges to equidistribution for large t independently of the initial 
probability distribution. In other words, the classical evolution on the graph is ergodic. (Note 
that we will use the symbol t for a discretized topological time while the continuous physical 
time is measured in terms of the path length s as in equation (1).)
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1.4. Scattering on quantum graphs

So far we discussed the wave equation and its classical limit on a compact graph. To turn this 
graph into a scattering system, we choose a subset of vertices H ∈ V , and at every vertex 
h ∈ H we add a semi-infinite edge (lead). H = |H| is the number of leads. The directed edges 
on the lead attached to vertex h are denoted by h(+) which points away from the vertex h and 
h(−) which points towards it. The Laplacian is extended to the leads in a natural way, and 
the boundary conditions at the vertices h ∈ H are modified by replacing dv by dh = dv + 1. 
Measuring distances from the vertex h outwards, the functions which are allowed on the lead 
take the form fh(x) = ah(−)e−ikx + ah(+)eikx. The spectrum of the Laplacian for a scattering 
graph is continuous and covers the entire real line, possibly with a discrete set of embedded 
eigenvalues (See e.g. [10]).

Consider the matrix

Wd,d′ = δo(d),t(d′)eikLd σ̃
(o(d))
d,d′ , d, d′ ∈ D, (9)

where σ̃(u) for u ∈ H are the vertex scattering matrices which are modified as explained 
above, and for u in the complement of H, they take the values of the vertex scattering matrices 
for the compact graph. Note that W(k) is a D × D matrix, and its entries are indexed by the 
labels of the directed edges in the compact part of the graph, in the same way as the original 
matrix U(k) of equation (6). However, unlike U(k), W(k) is not unitary, because some of its 
building blocks, namely the vertex scattering matrices σ̃(h), h ∈ H are not unitary when they 
are restricted to the directed edges in the compact part of the graph.

The analogue of M defined in (8) for the non-compact graph is

M̃d,d′ = |Wd,d′ |2 = δo(d),t(d′)

∣∣∣σ̃(o(d))
d,d′

∣∣∣
2

. (10)

It is sub-Markovian since for o(d) ∈ H the sums 
∑

d′ M̃d,d′ and 
∑

d′ M̃d′,d  are strictly less than 
1. The Perron–Frobenius theorem guarantees that the spectrum of M̃ is confined to the interior 
of the unit circle. For a random walker whose evolution is dictated by M̃, the probability to 
stay inside the compact part of the graph approaches zero after sufficiently long time. This is 
due to the walks which escape to the leads and never return.

Consider now a solution of the stationary wave equation for a given k subject to the condi-
tion that the wave function on the leads has the form fh(xh) = ah(−)e−ikxh + ah(+)e+ikxh. The 
scattering matrix for a non compact graph is a unitary matrix of dimension H which provides 
the vector of ‘outgoing amplitudes’ a(+) = {ah(+)}h∈H  in terms of the vector of ‘incoming 
amplitudes’ a(−) = {ah(−)}h∈H. It follows from the linearity of the wave equation that

a(+) = S(k)a(−) . (11)

The explicit expression for S(k) was derived in [10, 14] and will be quoted here without proof:

Sh,h′(k) = δh,ĥ′ρh′ +
∑
d,d′

τh,d

{ ∞∑
n=0

[Wn(k)]d,d′

}
eikLd′ τd′,h′

= δh,ĥ′ρh′ +
∑
d,d′

τh,d

[
I(D) − W(k)

]−1

d,d′
eikLd′ τd′,h′ .

 (12)

Here, ρh = σ̃
(h)
ĥ,h

 is the back reflection amplitude, τd′,h′ = σ̃
(h′)
d′,h′ is the transmission amplitude 

from the lead h′ to the edge d′ in the compact part of the graph, and τh,d  is the transmission 
amplitude from an edge d in the compact graph to a lead h. The first line in (12) expresses the 

U Smilansky and H Schanz J. Phys. A: Math. Theor. 51 (2018) 075302



6

fact that scattering proceeds by either reflecting from the incoming lead back to itself (the term 
outside the sum), or by penetrating to the compact part and scattering inside it several times 
before emerging outside. The contribution of the scattering process in the compact graph is 
provided by the expression in curly brackets. It can be rewritten as

∑
d,d′

τh,d

{ ∞∑
n=0

[Wn(k)]d,d′

}
eikLd′ τd′,h′ =

∞∑
n=0

∑

α∈A(n)
h,h′

A(n)
α eiklα . (13)

Here, n counts the number of vertices on a path α connecting the entrance and exit vertices h′ 

and h. A(n)
h,h′ is the set of all the paths crossing n vertices which start on h′ and end at h after 

traversing n  +  1 directed edges (d0, d1, · · · , dn), dj ∈ D with o(d0) = h′, t(dn) = h. Each path 

is of length lα =
∑n

j=0 Ldj. The term n  =  0 occurs only when h′ and h are neighbors on G . 

Then α is the directed edge d connecting h′ to h, A(0) = δd,d′τh,dτd,h′ and lα = Ld. For n � 1 
the amplitudes A(n)

α  can be written as

A(n)
α = τh,dn




n∏
j=1

σ
(o(dj))
dj,dj−1


 τd′,h′ . (14)

The series in the first line of (12) converges to the expression in the second line for any real 
k because W(k) is sub-unitary. The explicit form of the S(k) matrix provided in equation (12) 
will be used in the next sections. An alternative expression for S(k) which will not be used 
here can be found in [7].

2. Scattering of wave-packets and the delay-time distribution

Given a graph with leads to infinity as defined above, we consider a particular solution of the 
stationary wave equation with wave number k, where the wave function consists of an incom-
ing wave with unit amplitude in a single lead h′ but outgoing waves in all the leads. Limiting 
our attention to a specific lead h the wave function has the form

fh(xh) = δh,h′e−ikxh + ah(+)eikxh = δh,h′e−ikxh + Sh,h′(k)eikxh . (15)

The last equality follows from the definition of the scattering matrix. A time-dependent solution 
describing the propagation of a wave packet is obtained by a superposition of functions fh(xh) 
with an envelope function ω(k). As in [1] ω(k) is positive and normalized by 

∫∞
0 ω2(k)dk = 1. 

Assuming a linear dispersion relation (such as e.g. for electromagnetic waves in transmission 
lines), the intensity of the outgoing wave function in the position xh  =  0 at time s/c is

Ph,h′(s) =
1

2π

∣∣∣∣
∫ ∞

0
ω(k)Sh,h′(k)e−iksdk

∣∣∣∣
2

, (16)

which is the analogue of equation (11) in [1]. The unitarity of S guarantees the conservation 
of probability.

∑
h

∫ ∞

−∞
Ph,h′(s)ds = 1 .

For a Gaussian envelope,

U Smilansky and H Schanz J. Phys. A: Math. Theor. 51 (2018) 075302
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ω(k) =
(

2
πσ2

) 1
4

e−
(k−k0)

2

σ2 (17)

and under the condition k0 > 2σ, one can approximate the delay-time distribution by (see (17) 
in [1])

Ph,h′(s) ≈
1

2π

∫ ∞

−∞
dη e−iηse−

η2

2σ2

×

{√
2

πσ2

∫ ∞

−∞
dξ e−

2(ξ−k0)
2

σ2 Sh,h′

(
ξ +

η

2

)
Sh,h′

(
ξ − η

2

)}
.

 

(18)

Using equation (13) one can write an explicit expression for Ph,h′(s) for any values of σ and 
k0 which satisfy the conditions underlying (18),

Ph,h′(s) =
∞∑

n=0

∑

α,β∈A(n)
h,h′

[
eik0(lα−lβ)e−(lα−lβ)2σ2/8

]
A(n)
α A(n)

β

×
[

σ√
2π

e−
( lα+lβ

2 −s
)2

σ2/2
]

.

 

(19)

In the above result, we did not include the reflections from the vertex h′ (which correspond to 
zero delay). To render the discussion more transparent, we shall proceed in the limit where σ 
is very large, which allows to write the first square bracket above as a Kronecker δ and the last 
square bracket as a Dirac δ functions, resulting in

Ph,h′(s) =
∞∑

n=0

∑

α,β∈A(n)
h,h′

δlα,lβ A(n)
α A(n)

β δ(lα − s) . (20)

This expression can be simplified by recalling that the length of any path α ∈ A(n)
h,h′ can be 

written as lα =
∑

e∈E qe(α)Le where qe are non negative integers whose sum is n  +  1. Note 
that lα does not depend on the direction in which the edges are traversed. Because of the 
rational independence of the edge lengths, paths which share the same length must share also 
the same sequences {qe}e∈E, and they are distinct if they cross the same edges the same num-
ber of times but in different order. Figure 1 shows an example for such isometric but topologi-
cally distinct paths. Denote q(n) = {qe}e∈E with 

∑
qe∈E = n + 1. The set of isometric paths 

which share the code q(n) will be denoted by Γh,h′(q(n)). Then

Ph,h′(s) =
∞∑

n=0

∑
q(n)

∣∣∣∣∣∣
∑

γ∈Γh,h′ (q(n))

A(n)
γ

∣∣∣∣∣∣

2

δ(lq(n) − s) (21)

=

∞∑
n=0

∑
q(n)

pq(n)δ(lq(n) − s) (22)

where the probabilities pq(n) contain all interference effects between the isometric paths 
belonging to Γh,h′(q(n)). The result of these interferences is determined by the phases of 
the individual amplitudes A(n)

γ . These in turn depend on the phases of the elements of the 
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vertex-scattering matrices σ(v)
dj+1,dj

 encountered along the path γ but they are independent of the 

precise values of the edge lengths. Thus, the only information about the actual lengths of the 
graph edges in the delay-time distribution comes from the Dirac delta functions concentrating 
at the path lengths lq(n) =

∑
e∈E qeLe.

It is convenient to define the cumulative probability

Ch,h′(s) =
∫ s

0
Ph,h′(t)dt =

∞∑
n=0

∑
q(n)

pq(n)Θ(s − lq(n)), (23)

where Θ(x) is the Heavyside function. Clearly, Ch,h′(s) is a non-decreasing function of s. On 
the other hand it depends parametrically on the edge lengths L and is a non-increasing func-
tion of any Le (e ∈ E), because these lengths appear only in the arguments of the Heavyside 
step functions. We can use this fact to bound Ch,h′(s) from below and above by similar expres-
sions with modified edge lengths. To this end define the function

Ch,h′(s, �) =
∞∑

n=0

∑
q(n)

pq(n)Θ(s − (n + 1)�), (24)

where all edge lengths have been replaced by one and the same value �. Note that this is a 
formal definition and not related to the delay distribution of a graph with equal edge lengths, 
because equation (23) was derived under the assumption of rationally independent lengths. 
Take now � = max(Le) = L being the maximum of the edge lengths of the graph under con-
sideration. For the same value of s the arguments of the Heavyside functions in equation (24) 
are smaller (or equal) in comparison to equation  (23) and thus in equation  (24) less terms 
contribute. Repeating this argument for min(Le) = L we see that the cumulative delay distri-
bution can be bound from below and above by

Ch,h′(s; L) � Ch,h′(s) � Ch,h′(s; L) . (25)

Note that Ch,h′(s; �) = Ch,h′(s/�; 1). Thus it suffices to calculate Ch,h′(t; 1) for integer values 
of t. We refer to this quantity as the cumulative probability for the topological delay-time t, 

Figure 1. Isometric but topologically distinct paths differing in the orientation in which 
a loop of three vertices is traversed.

U Smilansky and H Schanz J. Phys. A: Math. Theor. 51 (2018) 075302
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i.e. the number of edges along the walk. Since there is no metric information to consider, 
Ch,h′(t; 1) is typically easier to calculate than the full expression in equation (23).

To proceed, write Ph,h′(s) = P(D)
h,h′(s) + P(ND)

h,h′ (s), where

P(D)
h,h′(s) =

∞∑
n=0

∑
qn


 ∑
γ∈Γh,h′ (q(n))

|A(n)
γ |2


 δ(lq(n) − s) (26)

P(ND)
h,h′ (s) =

∞∑
n=0

∑
qn


 ∑
γ �=γ′∈Γh,h′ (q(n))

A(n)
γ A(n)

γ′


 δ(lq(n) − s) . (27)

The partition of the delay-time distribution into the diagonal part P(D)
h,h′(s) and the  non-diagonal 

part P(ND)
h,h′ (s) separates the purely ‘classical’ contribution from the contribution from the inter-

ference of waves which propagate on isometric paths. The former will be studied in the next 

section. Sometimes, (when e.g. h �= h′ and the graph is not invariant under geometrical sym-

metries) the contribution of P(ND)
h,h′ (s) can be ignored upon further averaging. However this is 

not always the case, especially since the number of isometric trajectories |Γh,h′(q(n))| may 
increase indefinitely with n [15–17], and the sums do not necessarily vanish in spite of the fact 
that the individual contributions have complicated, seemingly random phases.

While some general properties of the classical time-delay distribution (26) can be derived 
as presented in the next section, there are no analogous results pertaining to the complete 
expression in equation (22). However, in section 4 we shall apply all results of the present and 
the following section to a simple graph and derive analytical results for both, the classical and 
the quantum delay distribution.

3. The classical delay-time distribution

In the present section we provide a classical description of the delay-time distribution. It is 
a valid approximation when quantum interference effects are negligible, either because of 
decoherence mechanisms in the scattering process or for short times, when the contributing 
trajectories do not have isometric partners. For long times and coherent dynamics a com-
parison to the reference provided by the classical description can highlight the features of 
the delay distribution which are due to genuine quantum (wave) properties of the scattering 
process, e.g. an enhancement of long delay-times (algebraic versus exponential decay) in 
section 4.

In the classical analogue of the scattering process described above, one considers a clas-
sical particle which moves with a constant speed on the incoming lead h′, and its probability 
to enter the graph through an edge d0 is |τd0,h′ |2. Reaching the next vertex after traversing a 
distance Ld0, it scatters into any of the connected edges d1 with probability M̃d1,d0 (10) and so 
on until it leaves the graph from the edge dn to the lead h after being scattered on n intermedi-
ate vertices. The length of the traversed trajectory between the entrance and exit vertices is 
ld0,··· ,dn =

∑n
j=0 Ldj . Thus, the delay-time distribution is

P(cl)
h,h′(s) =

∞∑
n=0

∑
d0,··· ,dn∈D

|τh,dn |2
{

n∏
i=1

M̃di,di−1

}
|τd0,h′ |2δ(s − ld0,··· ,dn) . (28)
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This expression could be further reduced by grouping together trajectories which share the 

same lengths, and the result reproduces the expression for P(D)
h,h′(s) given in equation (26).

Again, it is convenient to define the cumulative probability,

C(cl)
h,h′(s) =

∫ t

0
P(cl)

h,h′(t) dt

=

∞∑
n=0

∑
d0,··· ,dn∈D

|τh,dn |2
{

n∏
i=1

M̃di,di−1

}
|τd0,h′ |2 Θ(s − ld0,··· ,dn),

 (29)

in complete analogy to equation  (23). Again the cumulative probability is monotonically 
decreasing as a function of the edge lengths since all the factors multiplying the Heavyside 

function in (29) are positive. Hence one can bound C(cl)
h,h′(s) in a similar way as in (25).

We will now derive the leading asymptotic behavior of P(cl)
h,h′(s) for large time. To this end 

we consider the Laplace transform of equation (28)

LP(cl)
h,h′(z) =

∫ ∞

0
P(cl)

h,h′(s) e−szds (30)

=
∑
d,d′

|τh,d|2
∞∑

n=0

(M̃n(z))d,d′ e−zLd′ |τd′,h′ |2

=
∑
d,d′

|τh,d|2
[
I − M̃(z)

]−1
d,d′ e−zLd′ |τd′,h′ |2,

 
(31)

where

M̃(z) = e−zLM̃, (32)

and L is a diagonal matrix with entries Ld. Note that according to equation (31) the poles of 

LP(cl)
h,h′(z) are related to the zeroes of det(I − M̃(z)) and the residues at these poles can be 

computed with Jacobi’ s formula (adj  =  adjugate):

d
dz

det
(

I(D) − M̃(z)
)
= −tr

[
adj

(
I(D) − M̃(z)

) d
dz

M̃(z)
]

 (33)

= tr
[
adj

(
I(D) − M̃(z)

)
L M̃(z)

]
. (34)

The idea is now to use this information about the the analytic properties of LP(cl)
h,h′(z) in order 

to invert the Laplace transform by a complex contour integral. This procedure can be put on 
a solid basis by applying the Wiener-Ikehara theorem to equation (31). Using the results of 
[18] one gets

P(cl)
h,h′(s) ≈ e−sξ

∑
d,d′

|τh,d|2
[
adj

(
I(D) − M̃(−ξ)

)]
d,d′ eξLd′

tr
[
adj

(
I(D) − M̃(−ξ)

)
LM̃(−ξ)

] |τd′,h′ |2 (s → ∞)

 (35)

where ξ is the largest real zero of det
(
I(D) − M̃(z)

)
. It depends on both the graph connectivity 

and the set of edge lengths L. Equation (35) is the main result of the present section.

U Smilansky and H Schanz J. Phys. A: Math. Theor. 51 (2018) 075302



11

4. Example

4.1. The T−junction  model

As an example we choose a graph which is simple enough to allow for an analytical treatment 
and still rich enough to exhibit all aspects of the theory outlined above. In particular the model 
demonstrates the influence of quantum interferences on the delay distribution, P(ND)(s) from 
equation (27). The graph consists of two edges (E  =  2, D  =  4) which are connected at a central 
vertex. Moreover, at this vertex a single scattering lead is attached. Thus the central vertex has 
the total degree three. Both internal edges end in vertices of degree one with Neumann b.c. The 
graph can be depicted as shown in figure 2 and we refer to it as a T−junction. In order to specify 
the model completely we need to define the lengths of the two edges and the 3  ×  3 scattering 
matrix of the central vertex. For the lengths we choose two rationally independent values such 
that the total length is L = L1 + L2 = 1. This is no restriction of generality as the delay-time 
scales proportionally to this quantity. Our choice for σ(0) is motivated by analytical simplicity,

σ(0) =
1
2




0 +
√

2 −
√

2
−
√

2 1 1
+
√

2 1 1


 . (36)

Here the lower right 2  ×  2 block describes the scattering within the interior of the graph. Our 
calculations are simplified by the fact that in this block no phases must be considered. The first 
column and the first row contain the transition amplitudes τ from the scattering lead into the 
graph and back. The amplitude at the central vertex for a direct back scattering into the lead 

is zero, ρ00 = σ
(0)
0,0 = 0.

Note that according to [20] any choice of a unitary scattering matrix σ(0)(k0) at some fixed 
wave number k0 is compatible with a self-adjoint Laplacian. However, this choice also fixes 
the variation of σ(0)(k) with wave number which depends on the parameter (k − k0)/(k + k0) 
[20]. As we consider here an envelope function with a width σ � k0 we can approximate 
σ(0)(k) ≈ σ(0)(k0) and ignore the energy dependence of the vertex scattering matrix.

Figure 2. A simple model graph consisting of two edges (green) and one scattering 
lead attached to the central vertex 0 (blue). In numerical calculations we use 
L1 = (1 +

√
5)/8 ≈ 0.4045 and L2 = 1 − L1 ≈ 0.5955.
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4.2. The S-matrix

Using equation (12) we can now derive an expression for S(k). The indices h, h′ from equa-
tion (12) can be omitted, since there is just a single scattering channel. Defining φ1,2(k) = e2ikL1,2 
we obtain

S(k) =
φ1φ2 − φ1+φ2

2

1 − φ1+φ2
2

 (37)

=

∞∑
t1,t2=1

(t1 + t2)− (t1 − t2)2

2t1+t2 t1t2

(
t1 + t2 − 2

t1 − 1

)
φt1

1 φ
t2
2 −

∞∑
t=1

φt
1 + φt

2

2t (38)

(see appendix A for details). The first line of is a compact representation which is suitable 
for numerical calculations and clearly highlights the resonance structure of the scattering 
matrix. The second line is an expansion of S(k) in terms of families of isometric trajectories 
starting and ending on the scattering lead. These families are labelled by pairs α = (t1, t2) 
counting the number of reflections from the the first and second outer vertex, respectively. 
Trajectories which are restricted to a single edge are accounted for by the second sum. In 
the notation of equation (21) the numbers q defining a family count the traversals of directed 
bonds. However, in our simple model, an edge is always traversed outward and inward suc-
cessively, thus q0→1 = q1→0 = t1 and q0→2 = q2→0 = t2. We will refer to the integer value 
t = t1 + t2 as the topological time of a path on the T−junction graph. As in equation (13) the 
oscillating phase factors φt1

1 φ
t2
2 = exp(iklt1,t2) in equation (38) depend on the total length of 

the trajectories within a family,

lt1,t2 = 2(t1L1 + t2L2), (39)

while the rational prefactors represent the sum of amplitudes from all trajectories within a 
family, as in equation (21).

Figure 3 shows the time-delay density computed with equations (16), (17) and (37) by a 
Fourier transform of the scattering matrix S(k). The two curves correspond to two different 
envelope widths σ. As predicted above in equations (19) and (20) a series of sharp peaks cen-
tered at the lengths of scattering trajectories develops as σ grows. For example, the first two 
peaks at s = 2L1 ≈ 0.81 and s = 2L2 ≈ 1.19 each correspond to a single scattering trajectory 
which enters the graph, visits one of the outer vertices 1 or 2 and returns to the lead. However, 
to most of the peaks more than one trajectory contributes and their interference, expressed 
by the rational prefactors in equation (38), determines the height of the peak. For growing 
time s, an increasing fraction of peaks have a separation of the order of  ∼σ−1 or smaller 
and overlap. This is a limitation to equation (20) and the subsequent theory. An example at 
3L1 ≈ 2L2 ≈ 2.4 is magnified and compared to the prediction of equation (19) in the inset 
figure 3(b).

4.3. The topological delay-time distribution

Within the asymptotic approximation for broad envelope functions (short pulses), equa-
tion  (20), we can evaluate the (cumulative) distribution of delay-times (23) for the 
T−junction. According to equations  (21)–(23) the squared coefficients from equation  (38) 
provide the weigth of a family and we obtain
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C(s) =
∞∑

t1,t2=1

(
(t1 + t2)− (t1 − t2)2

2t1+t2 t1t2

(
t1 + t2 − 2

t1 − 1

))2

Θ(s − lt1,t2)

+

∞∑
t=1

2−2t [Θ(s − lt,0) + Θ(s − l0,t)].

 

(40)

As in equation (25), this function can be bound from below and above by a variation of the 
edge lengths. Define C(s, �) to denote the r.h.s of equation (40) with both edge lengths L1, L2 
replaced by some value � such that lt1,t2 is 2(t1 + t2)�. Then the Heavyside functions in equa-
tion (40) are Θ(s − 2t�) and select all terms with topological times t = t1 + t2 up to �s/2�� (the 
largest integer below s/2�). Thus, if pt denotes the sum of coefficients of all terms with some 
fixed topological time t, C(s, �) is the cumulant sum

C(s, �) =
�s/2��∑

t=0

pt. (41)

Starting with the substitution t2 = t − t1 we can evaluate pt as

pt = 21−2t +

t−1∑
t1=1

(
2−t t − (t − 2t1)2

t1(t − t1)

(
t − 2
t1 − 1

))2

 (42)

=
3
4

42−t

t(t − 1)

(
2t − 4
t − 2

)
(t > 1) (43)

Figure 3. (a) The probability density P(s) for a T−junction with L1 =
(1 +

√
5)/8 ≈ 0.4045 and L2 = 1 − L1 ≈ 0.5955 is shown for σ = 100 (blue) and 

σ = 10 (green broken line) on a logarithmic scale. (b) The inset enlarges a region where 
two peaks with almost degenerate trajectory lengths interfere (σ = 100). The dashed 
red line in the inset is the interference pattern predicted by equation (19).
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≈ 3
4

t−5/2
√
π

(t → ∞) (44)

while p0  =  0 and p1  =  1/2. Equation (43) can be found with the help of standard computer 
algebra, and a formal proof can be based on the methods outlined in [21]. pt is a normalized 
discrete probability distribution (the distribution of topological time-delays) and its cumulant 
sum is

ct =

t∑
t′=0

pt′ (45)

= 1 − 2
4tt

(
2t − 2
t − 1

)
 (46)

≈ 1 − t−3/2/
√

4π (t → ∞). (47)

Now consider C(s,L1) and C(s,L2). Assuming without loss of generality L1 < L2 we have 
2(t1 + t2)L1 � lt1,t2 � 2(t1 + t2)L2, i.e. in comparison with C(s) the Heaviside steps occur 
in C(s, L1) for smaller and in C(s, L2) for larger values of s while the coefficients remain 
unchanged. Hence

C(s, L2) � C(s) � C(s, L1). (48)

Asymptotically for large delay s → ∞ these bounds on C(s) are explicitly given by substitu-
tion of s/2L1,2 into equation (47),

1 − (s/2L2)
−3/2

√
4π

� C(s) � 1 − (s/2L1)
−3/2

√
4π

(s → ∞). (49)

We conclude that the probability 1 − C(s) to measure a delay larger than s falls off as a power 
law with exponent  −3/2 and that for 2L1 � 1 � 2L2 a prefactor 1/

√
4π  should be expected.

4.4. The long-time-delay distribution

For s → ∞ the factor e−iks in the Fourier integral of equation (16) has very fast oscillations 
which cancel out unless S(k) is rapidly changing too. Therefore the asymptotic time-delay for 
large s is related to narrow resonances of the scattering matrix. See Section 2 in [1]. On this 
basis we can develop an alternative approach to the delay-time distribution, similar to [22, 23]. 
In appendix B we show that C(s) for large s can be approximated by the sum

C(s) = 1 − 4π
∑

n

ω2(κn)γne−2γns, (50)

where κn − iγn are the poles of the scattering matrix (37) in the complex k-plane. For broad 
envelope functions ω(k) many resonances contribute and we can approximate equation (50) 
by an integral over the resonant wave number κ and the resonance width γ,

C(s) = 1 − 4π
∫ ∞

0
dκ

∫ ∞

0
dγ ρ(κ, γ)ω2(κ)γ e−2γs (51)

= 1 − 1√
4π

( s
L

)−3/2
, (52)
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where L = L1 + L2 is the total length of the graph,

ρ(κ, γ) =
1
π2

√
L3

2γ
 (53)

is the average density of resonances in the complex plane and the normalization of ω(k) was 
used to integrate over κ (see appendix B for details). Clearly, equation  (52) is compatible 
with equation (49) and even refines this prediction from the previous subsection. Moreover it 
becomes clear, that a condition for this result is that the envelope function covers many reso-
nances with a relevant contribution in equation (50), i.e. with a width up to γ(s) ∼ s−1. Since 
ρ(k, γ) ∼ γ−1/2 the number of contributing resonances scales as σ

√
γ(s) and we infer that 

equation (51) is valid up to a maximum time s ∼ σ2. Beyond that value C(s) will have a non-
universal behaviour dictated by the resonances with the smallest widths which are covered by 
the envelope function.

Figure 4 illustrates the results from the previous and the present subsections. In 
order to highlight the power-law tail of the delay-time distribution we show the quantity 
1 − C(s) =

∫∞
s ds′P(s′), i.e. the probability to measure a delay exceeding s. We compare 

numerical results for σ = 50 and σ = 200 to the bounds derived from the topological delay-
time in section 4.3 and to equation (52) above. For σ = 200 there is a very good agreement 
up to s ∼ 300. Beyond s  =  3.000 P(s) falls off very fast because the region covered by the 
envelope function contains no resonances which are narrow enough to contribute. For smaller 
σ the deviations set in earlier and are generally larger, as expected.

Figure 4. The long-time tail of the integrated delay-time distribution is shown on 
a double logarithmic scale for σ = 50 (broken green line) and σ = 200 (blue). The 
dashed red line is the theoretical result (52) based upon the distribution of narrow 
resonances. The upper and the lower dotted lines are the bounds (49) derived from 
the topological delay-time distribution. For the calculations we used k0  =  1.000 and 
a discrete Fourier transform of the S-matrix (37) on a grid with a spacing δk ∼ 10−4 
which ensures convergence of the distribution in the displayed region s � 4.000.
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4.5. The clasical delay distribution

According to equation  (29), for the clasical delay distribution we have to sum over all 
paths leading from the scattering channel into the graph and back to the channel. For the 
T−junction these paths consist of t1 excursions from the central vertex 0 to vertex 1 and t2 
excursions to vertex 2, in arbitrary order. The total length of such a path was given in equa-
tion (39). The product of matrix elements of M̃  along the path is 4−(t−1), corresponding to 
t  −  1 inner crossings of vertex 0 (see appendix C for details). Again t = t1 + t2 denotes the 
topological time. Together with the probabilities |τh,d0 |2 = |τh,dn |2 = 1/2 for entering and 
leaving the interior graph from/to the scattering channel the weight of each path is 4−t. The 
number of paths with given t1 and t2 is easily counted and thus from equation (29) we find 
for the T−junction

C(cl)(s) =
∞∑

t1,t2

4−(t1+t2)
(

t1 + t2
t1

)
Θ(s − lt1,t2). (54)

Similar to equation (48) we can estimate this quantity by substitution of a common value � for 
the edge lengths. As there are 2t paths with topological time t we have

C(cl)(s, �) =
∞∑

t=1

2−tΘ(s − 2t�) (55)

= 1 − 2−�s/2��. (56)

With � = L1 (� = L2) this expression is an upper (lower) bound for C(cl)(s). However, a much 
more precise estimate can be obtained from equation (35). For the T−junction we find

det(1 − M̃(−ξ)) = 1 − 1
4

e2L1ξ − 1
4

e2L2ξ = 0 (57)

Figure 5. The classical delay-time distribution is shown on a logarithmic scale with 
a red line. The dashed line is the theoretical result (59) for ξ ≈ 0.6846 (the numerical 
root of equation (57)). The dotted lines are the upper and the lower bounds on C(cl)(s) 
derived from the topological delay distribution.
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and can solve for ξ. Then, integrating equation (35) with respect to s we have

C(cl)(s) = 1 −
∫ ∞

s
ds′ P(cl)(s′) (58)

≈ 1 − A(ξ)
ξ

e−ξs (s → ∞) (59)

where

A(ξ) =
2

L1 e2ξL1 + L2 e2ξL2
 (60)

dentotes the sum in equation (35) for a T−junction. See appendix C for more details on the 
derivation of these results.

Note that equation (57) requires a numerical solution in general. A full analytical soltion 
can be given, e.g. for a T−junction with two edges of equal length, L1 = L2 = 1/2. Expanding 
around this trivial case to leading order in the difference of the edge lengths δL = L2 − L1 for 
fixed L1 + L2 = 1 one finds ξ ≈ ln 2 · (1 − ln 2

2 [δL]2) and A(ξ) = 1 − ln 2 · [δL]2.
Figure 5 illustrates our results for the classical delay distribution and shows a very accurate 

agreement between equation (60) and numerical data generated from equation (54).

5. Conclusions

In the preceding sections  we have provided a theory for the computation of the delay-
time distribution in scattering from quantum (wave-guide) networks. A main result was the 
reduction of the distribution to a purely combinatorial expression, the topological delay-
time distribution of equation (24). It provides bounds for the actual distribution which do 
not depend on the precise lengths of the edges of the network as long as they are not ratio-
nally related.

In the last chapter we have given a complete solution for a simple graph, which reveals 
remarkable features. The coherent delay-time distribution decays as a power-law while the 
classical distribution shows the expected exponential decay, emphasizing the importance 
of interference effects when the scattering region supports a complex internal dynamics. 
From another perspective the algebraic decay is related to a particular distribution of the 
widths of long-lived scattering resonances which in this simple model was analytically 
accessible.

The methods developed in the present paper and tested in the toy model of section 4 can 
now be applied to quantum graphs with a physically more interesting and challenging struc-
ture. To name an example, scattering from random non compact graphs is now under study, 
showing the effects of Anderson localization in the time domain. The results will be reported 
shortly.
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Appendix A

Here we evaluate the scattering matrix for the T−junction-model of section 4 starting from 
equations (12) and (36). There is only a single scattering channel h = h′ = 0. The amplitude 
for direct reflection

ρ0 = 0

is given by the first element of the matrix σ(0) in equation (36).
The transition amplitudes τd0 from the scattering channel into the graph are non-zero only 

if the directed bond d points outward from the central vertex (0 → 1, 0 → 2). Vice versa the 
transition amplitudes τ0d are non-zero for inward pointing bonds (1 → 0, 2 → 0). According 
to equation (36) each non-zero transition amplitude is  ±

√
2/2, and their product has negative/

positive sign if the first and the last edge traversed inside the graph are equal/distinct.
The matrix W has dimension 44 and is explicitly given by

W(k) =




0 0 1
2 eikL1 1

2 eikL1

0 0 1
2 eikL2 1

2 eikL2

eikL1 0 0 0

0 eikL2 0 0




 (A.1)

where we have ordered the four directed bonds of the graph such, that the first two entries 
correspond to bonds from the central vertex outward and the last two entries to bonds directed 
inward. For compact notation we define

φ1,2(k) = e2ikL1,2 (A.2)

and find det(I − W) = 1 − (φ1 + φ2)/2. Now it is possible to calculate (I  −  W)−1 using the 
adjugate of I  −  W. In fact, it suffices to calculate the lower left 2  ×  2 block of the adjugate 
(outward to inward)

1
2

(
eikL1(2 − e2ikL2) eik(2L1+L2)

eik(L1+2L2) eikL2(2 − e2ikL1)

)

because only for this combination the product τh,dτd′,h in equation (12) is non-zero and equal 
to  ±1/2 (minus on the diagonal of the block). According to equation (12), the first and sec-
ond column are also multiplied by eikL1 and eikL2, respectively. Summation of all four matrix 
elements finally yields equation (37). In order to arrive at equation (38) we can expand the 
denominator as a geometric series and regroup all terms according to the powers in φ1 and φ2.

As an alternative, equation (38) can also be obtained directly from a summation of all paths 
on the graph as in equation (13). A path consists of several excursions from the central vertex 
0 to either vertex 1 or vertex 2 and back to zero. Each such excursion contributes a phase φ1 or 
φ2, respectively. Moreover, there is a transion amplitude 1/2 for every internal transition across 
vertex 0 and an amplitude  ±1/

√
2 for a transition from the scattering channel into the graph 

and back. Therefore each path with t1 + t2 excursions has an amplitude  ±2−(t1+t2). Paths of the 
form 1…2 or 2…1 have a positive sign and are counted by choosing the positions of the n1  −  1 
remaining excursions to vertex 1 from the t1 + t2 − 2 available inner time steps. Paths of the 
form 1…1 or 2…2 have negative sign and are counted in an analogous way. We obtain

4 Because of the bipartite structure of the graph with respect to inward/outward bonds it would be possible to reduce 
the whole calculation to 2  ×  2 matrices. We chose not to do so here in order to keep the notation parallel to the 
general result in equation (12).
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S =

∞∑
t1,t2=0

[
2
(

t1 + t2 − 2
t1 − 1

)
−

(
t1 + t2 − 2

t1 − 2

)
−
(

t1 + t2 − 2
t2 − 2

)]
φt1

1 φ
t2
2

2t1+t2
. (A.3)

After applying binomial recursion (Pascal’s triangle) to the second and the third bino-
mial, the first binomial can be factored out and the equivalence to equation (38) is easily 
established.

Appendix B

As obvious from equation  (37), the scattering matrix has a singularity if 
φ1(k) + φ2(k) = 2. For real k  >  0 this equation  has no solution since it would imply 
φ1(k) = φ2(k) = 1, i.e. kL1,2 = 2m1,2π and L1/L2 = m1/m2 for integer m1 and m2. This is 
excluded by the incommensurability of the bond lengths. However it is possible that the two 
phases pass through a multiple of 2π,

e2ik1L1 = e2ik2L2 = 1 (B.1)

at two different wave numbers k1 and k2 which have a very small spacing

δk = |k1 − k2|. (B.2)

We define

L = L1 + L2 (B.3)

λ =
L1L2

L
 (B.4)

γ =
λ2

L
δk2 (B.5)

and a weighted average of k1 and k2,

κ =
k1L1 + k2L2

L
. (B.6)

It is easy to verify that S(k1) = S(k2) = −1 and S(κ) = +1, i.e. the phase of the S-matrix 
completes a full cycle in the small interval between k1 and k2. In the immediate vicinity of κ 
the functional form of the phase is universal when k − κ ∼ δk2. Namely, using equation (B.1) 
we have

φ1(k) = e2ikL1 ≈ 1 + 2iλδk + 2iL1δk − 2λ2δk2 (B.7)

φ2(k) = e2ikL2 ≈ 1 − 2iλδk + 2iL2δk − 2λ2δk2 (B.8)

S(k) ≈ −k − (κ+ iγ)
k − (κ− iγ) (B.9)

= e2i arctan([k−κ]/γ). (B.10)

Note that due to cancellations equation (B.9) is valid to leading order in δk only, although 
φ1,2(k) were expanded to second order. From this result it is obvious that the scattering matrix 
has a pole close to the real axis at κ− iγ . For a resonance of width γ the maximal derivative 
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of the phase in equation  (B.10) is 2/γ . Up to this value of s the Fourier integral in equa-
tion (16) has a point of stationary phase and thus a relevant contribution to P(s) results. In the 
vicinity of κ we can approximate the envelope function by the constant ω(κ). The resulting 
contribution is then found from the residue 2iγ e−iκs−γs of the remaining integrand at the pole. 
Summation over all resonances gives

P(s) =
1

2π

∣∣∣∣∣4π
∑

n

γnω(κn) e−iκns−γns

∣∣∣∣∣
2

. (B.11)

In this expression the contributions from different resonances n to P(s) will interfere. 
However, in C(s) the integration with respect to s will destroy these interferences. To see this, 
expand | . . . |2 as a double sum over n, n′. Then nondiagonal terms have oscillating phase fac-
tors ei(κn−κn′ )s and are suppressed in comparison to the diagonal terms n = n′. We are left with

C(s) = 1 − 8π
∫ ∞

s
ds′

∑
n

ω2(κn)γ
2
ne−2γns

 (B.12)

which finally yields equation (50). Further the sum over resonances can be replaced by the 
integral equation (51) if the envelope function is broad and a large number of resonances con-
tribute. In this way the delay distribution for long times is related to the density of narrow reso-
nances in the complex plane. In order to estimate this density ρ(κ, γ) we first note that points 
k1 with e2ik1L1 = 1 have a density L1/π . At these points the second phase ϕ2(k1) = 2k1L2 
can be treated as a random number with uniform distribution between  ±π. If |ϕ2| is small, a 
small change δk = −ϕ2/2L2 is sufficient to bring it to zero. Thus a spacing between 0 and δk 
results with probability 2δkL2/π. Then 2L1L2δk/π2 =

√
2γL3/π2 is the probability to find a 

resonance with width smaller than γ per unit k-interval. This is equivalent to equation (53).

Appendix C

For the T−junction, the matrix elements of M̃ in equation (29) are the absolute squares of the 
elements of W̃  in equation (A.1),

M̃ =




0 0 1
4

1
4

0 0 1
4

1
4

1 0 0 0
0 1 0 0


 . (C.1)

The upper right block contains the probabilities to scatter from a bond directed inward (1 → 0 
or 2 → 0) into an outward bond (0 → 1 or 0 → 2). The lower left block represents the prob-
abilities for the opposite process. This block is a 2  ×  2 unit matrix because along a path on 
the graph the bond 0 → 1 is always followed by 1 → 0 and the same holds for 0 → 2, 2 → 0. 
Thus each path contains an even number 2t of directed bonds, where the topological time 
t = t1 + t2 counts the number of excursions to vertex 1 or vertex 2. A path with topological 
time t pics up t matrix elements 1 from the lower left and t  −  1 elements 1/4 from the upper 
right block, i.e. it has a weight 41−t (excluding the probabilities to enter (leave) the interior 
graph at the start (end) of the path.

For M̃(z) in equation  (32) we find from equation  (C.1) and with the substitution 
x1,2(z) = e−zL1,2
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M̃(z) =
1
4




0 0 x1 x1

0 0 x2 x2

4x1 0 0 0
0 4x2 0 0


 (C.2)

and a straightforward calculation yields

det(1 − M̃(z)) = 1 − x2
1

4
− x2

2

4
 (C.3)

= 1 − 1
4

e−2L1z − 1
4

e−2L2z (C.4)

d
dz

det(1 − M̃(z)) =
L1

2
e−2L1z +

L2

2
e−2L2z. (C.5)

To complete the information required in equation (35) we need the adjugate of I − M̃(z). As 
in the calculation of S in appendix A it suffices to calculate the lower left block (outward to 
inward)

1
4

(
4x1 − x1x2

2 x2
1x2

x1x2
2 4x2 − x2

1x2

)
.

Only for these matrix elements one the factor |τd,0τd′,0|2 is non-zero and has the value 1/4. 
Finally the sum over d, d′ in equation (35) yields (x1(z)2 + x2(z)2)/4 = 1 − det(I − M̃(z)). 
In particular, at a zero of the determinat this is just 1.
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