- Home
- Hochschule
- Fachbereiche
- Ingenieurwissenschaften und Industriedesign
- Institut für Maschinenbau
- Mitarbeiter
Prof. Dr. rer. nat. habil. Holger Schanz
Aufgabengebiete
- Lehre in den Fachgebieten Informatik und Physik
- Datenschutzbeauftragter der Hochschule
- Lehrveranstaltungs- und Prüfungsplanung des Instituts für Maschinenbau
- Mitglied im Fachbereichsrat IWID
- Mitglied im Prüfungsausschuss des Instituts für Maschinenbau
- Mitglied in der Kommission für IT- und Mediendienste
Projekte
- Topologische Resonanzen in quantisierten Netzwerken
- Singularitäten in der Zeitverzögerung zweidimensionaler Streusysteme
Veröffentlichungen
- C. Wang, U. Kuhl, A. Dowling, H. Schanz and T. Kottos. Bound states in the continuum induced via local symmetries in complex structures. Phys. Rev. Applied 22, 014010 (2024).
- R. Band, H. Schanz and G. Sofer.
Differences between Robin and Neumann eigenvalues on metric graphs.
Ann. Henri Poincare 2023 (doi:10.1007/s00023-023-01401-2). - B. Dietz, H. Schanz, U. Smilansky and H. Weidenmüller. The statistics of spectral shifts due to finite rank perturbations. J. Phys. A 54, 015203 (2020).
- H. Schanz and U.Smilansky. Edge switching transformations of quantum graphs – a scattering approach. Algebra i Analiz 30, 273 (2018).
- U. Smilansky and H. Schanz. Delay-time distribution in the scattering of time-narrow wave packets (II) — quantum graphs. J. Phys. A 51, 075302 (2018).
- M. Aizenman, H. Schanz, U. Smilansky and S. Warzel. Edge switching transformations of quantum graphs. Acta Physica Polonica A 132, 1699 (2017).
- H. Li, S. Suwunnarat, R. Fleischmann, H. Schanz and T. Kottos. Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers. Phys. Rev. Lett. 118, 044101 (2017).
- S. Gnutzmann, H. Schanz and U. Smilansky. Topological Resonances in Scattering on Networks (Graphs). Phys. Rev. Lett. 110, 094101 (2013).
- A. Bäcker, R. Ketzmerick, S. Löck and H. Schanz. Partial Weyl Law for Billiards. Europhys. Lett. 94, 30004 (2011).
- M. Prusty and H. Schanz. Self-pulsed electron transmission through a finite waveguide in a transversal magnetic field. Phys. Rev. Lett. 98 (2007) 176804.
- D. Cohen, T. Kottos and H. Schanz. Rate of energy absorption by a closed ballistic ring. J. Phys. A 39 (2006) 11755.
- M. Prusty and H. Schanz. Signature of directed chaos in the conductance of a nanowire. Phys. Rev. Lett. 96 (2006) 130601.
- H. Schanz in H. Malchow, T. Pöschel and L. Schimannsky-Geier (Eds.). Wave packet dynamics and chaotic eigenstates. Irreversible Prozesse und Selbstorganisation, Logos, Berlin (2006).
- H. Schanz in G. Berkolaiko et al. (Eds.). A relation between bond-scattering matrix and number counting function for quantum graphs. Quantum Graphs and Their Applications, Contemporary Mathematics 415, AMS (2006).
- H. Schanz and M. Prusty. Directed chaos in a billiard chain with transversal magnetic field. J. Phys. A 38 (2005) 10085.
- H. Schanz. Phase-space correlations of chaotic eigenstates. Phys. Rev. Lett. 94 (2005) 134101.
- M. Puhlmann, H. Schanz, T. Kottos and T. Geisel. Quantum decay of an open chaotic system: a semiclassical approach. Europhys. Lett. 69 (2005) 313.
- H. Schanz, T. Dittrich and R. Ketzmerick. Directed Chaotic Transport in Hamiltonian Ratchets. Phys. Rev. E 71 (2005) 026228.
- D. Cohen, T. Kottos and H. Schanz. Quantum pumping: The charge transported due to a translation of a scatterer. Phys. Rev. E 71 (2005) 035202(R).
- H. Schanz. Hamiltonsche Ratschen: Antrieb durch Chaos. Beitrag zum Jahrbuch 2004 der Max-Planck-Gesellschaft.
- H. Schanz. Quantum chaos: from minimal models to universality. Habilitationsschrift (2004).
- T. Kottos and H. Schanz. Statistical properties of resonance widths for open quantum graphs. Waves in Random Media 14 (2004) S91.
- H. Schanz, M. Puhlmann and T. Geisel. Shot noise in chaotic cavities from action correlations. Phys. Rev. Lett. 91 (2003) 134101.
- H. Schanz and T. Kottos. Scars on quantum networks ignore the Lyapunov exponent. Phys. Rev. Lett. 90 (2003) 234101.
- H. Schanz. Reaction matrix for Dirichlet billiards with attached waveguides. Physica E 18 (2003) 429.
- G. Berkolaiko, H. Schanz and R. S. Whitney. Form factor for a family of quantum graphs: an expansion to third order. J. Phys. A 36 (2003) 8373.
- L. Hufnagel, R. Ketzmerick, M. F. Otto and H. Schanz. Eigenstates ignoring regular and chaotic phase-space structures. Phys. Rev. Lett. 89 (2002) 154101.
- G. Berkolaiko, H. Schanz and R. S. Whitney. Leading off-diagonal correction to the form factor of large graphs. Phys. Rev. Lett. 88 (2002) 104101.
- H. Schanz and U. Smilansky. Combinatorial identities from the spectral theory of quantum graphs. The Electronic Journal of Combinatorics 8 (2001) R16.
- H. Schanz, M. F. Otto, R. Ketzmerick and T. Dittrich. Classical and quantum Hamiltonian ratchets. Phys. Rev. Lett. 87 (2001) 070601.
- K. Pichugin, H. Schanz and P. Seba. Effective coupling for open billiards. Phys. Rev. E 64 (2001) 056227.
- T. Kottos and H. Schanz. Quantum graphs: a model for quantum chaos. Physica E 9 (2001) 523.
- T. Dittrich, B. Mehlig and H. Schanz. Spectral signatures of chaotic diffusion in systems with and without spatial order. Physica E 9 (2001) 494.
- H. Schanz and U. Smilansky. Spectral statistics for quantum graphs: Periodic orbits and combinatorics. Phil. Mag. B 80 (2000) 1999.
- H. Schanz and U. Smilansky. Periodic-orbit theory of Anderson localization on graphs. Phys. Rev. Lett. 84 (2000) 1427.
- T. Dittrich, R. Ketzmerick, M. F. Otto and H. Schanz. Classical and quantum transport in deterministic Hamiltonian ratchets. Ann. Phys.-Berlin 9 (2000) 755.
- T. Dittrich, G. Koboldt, B. Mehlig and H. Schanz. Spectral statistics in chaotic systems with two identical, connected cells. J. Phys. A 32 (1999) 6791.
- T. Dittrich, B. Mehlig, H. Schanz, U. Smilansky, P. Pollner and G. Vattay. Spectral correlations in systems undergoing a transition from periodicity to disorder. Phys. Rev. E 59 (1999) 6541.
- B. Esser and H. Schanz.
Excitonic-vibronic coupled dimer: Separatrix structure, regular and chaotic behavior of the semiclassical dynamics versus full-quantum evolution.
J. Lumin., 76-77 (1998) 530. - T. Dittrich, B. Mehlig, H. Schanz and U. Smilansky.
Signature of chaotic diffusion in band spectra.
Phys. Rev. E 57 (1998) 359. - H. Schanz and B. Esser.
Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system.
Phys. Rev. A 55 (1997) 3375. - H. Schanz, I. Barvik and B. Esser.
Transfer and decay of an exciton coupled to vibrations in a dimer.
Phys. Rev. B 55 (1997) 11308. - H. Primack, H. Schanz, U. Smilansky and I. Ussishkin.
Penumbra diffraction in the semiclassical quantization of concave billiards.
J. Phys. A 30 (1997) 6693. - T. Dittrich, B. Mehlig, H. Schanz and U. Smilansky.
Universal spectral properties of spatially periodic quantum systems with chaotic classical dynamics.
Chaos Solitons & Fractals 8 (1997) 1205. - H. Schanz.
Investigation of Two Quantum Chaotic Systems.
PhD thesis, Humboldt Universität Berlin, 1996. - H. Schanz and B. Esser.
Nonadiabatic couplings and incipience of quantum chaos.
Z. Phys. B 101 (1996) 299. - H. Primack, H. Schanz, U. Smilansky and I. Ussishkin.
Penumbra diffraction in the quantization of dispersing billiards.
Phys. Rev. Lett. 76 (1996) 1615. - B. Esser and H. Schanz.
Nonlinear properties of energy transfer in molecular aggregates coupled to a vibrational environment.
In J. A. Freund, editor, Dynamik, Evolution, Strukturen. Verlag Dr. Köster, Berlin, 1996. - H. Schanz.
On finding the periodic orbits of the Sinai billiard.
In J. A. Freund, editor, Dynamik, Evolution, Strukturen. Verlag Dr. Köster, Berlin, 1996. - H. Schanz and U. Smilansky.
Quantization of Sinai's billiard - a scattering approach.
Chaos, Solitons & Fractals 5 (1995) 1289. - M. Sieber, H. Primack, U. Smilansky, I. Ussishkin and H. Schanz.
Semiclassical quantization of billiards with mixed boundary conditions.
J. Phys. A 28 (1995) 5041. - B. Esser and H. Schanz.
Excitonic-vibronic coupled dimers - a dynamic approach.
Z. Phys. B 96 (1995) 553. - I. Barvik, B. Esser and H. Schanz.
Nonlinearity and trapping in excitation transfer - dimers and trimers.
Phys. Rev. B 52 (1995) 9377. - B. Esser and H. Schanz.
Regular and chaotic dynamics in systems with excitonic-vibronic coupling.
Chaos Solitons & Fractals 4 (1994) 2067. - H. Schanz.
Irreguläre Streuung an einem Cluster nichtüberlappender Potentiale.
Diploma thesis, Technische Universität Dresden, 1992. - W. John, B. Milek, H. Schanz and P. Seba.
Statistical properties of resonances in quantum irregular scattering.
Phys. Rev. Lett. 67 (1991) 1949.
Werdegang
- seit 04/2009
Professor für Informatik und Physik am Institut für Maschinenbau der Hochschule Magdeburg-Stendal - 11/2006-03/2009
Consultant im Bereich Finanzmathematik, d-fine GmbH, Frankfurt am Main - 10/1998-10/2006 wissenschaftlicher Assistent am Institut für nichtlineare Dynamik der Universität Göttingen; Forschung zum Thema Wellenchaos in komplexen Systemen am Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen (Habilitation in Physik am 15. 11. 2004)
- 12/1996-09/1998
wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Physik komplexer Systeme, Dresden - 10/1996-11/1996
Forschungsaufenthalt am Weizmann Institute of Science, Rehovot (Israel) - 03/1993-09/1996
Doktorand an der Humboldt-Universität Berlin (Promotion in theoretischer Physik am 13. 12. 1996) - 11/1992-02/1993
Forschungsaufenthalt am Weizmann Institute of Science, Rehovot (Israel) - 04/1988-09/1992 Physikstudium an der Technischen Universität Dresden
(Diplom in Physik am 21. 9. 1992).
Kontakt
Prof. Dr. rer. nat. habil. Holger Schanz
Praktische Informatik, Physik
Tel.: (0391) 886 43 17
Fax: (0391) 886 42 43
E-Mail: holger.schanz@h2.de
Besucheradresse: Haus 10, Raum 2.09