- Home
- Hochschule
- Fachbereiche
- Ingenieurwissenschaften und Industriedesign
- Institut für Maschinenbau
- Mitarbeiter
Prof. Dr. rer. nat. habil. Holger Schanz
Aufgabengebiete
- Lehre in den Fachgebieten Informatik und Physik
- Datenschutzbeauftragter der Hochschule
- Lehrveranstaltungs- und Prüfungsplanung des Instituts für Maschinenbau
- Mitglied im Fachbereichsrat IWID
- Mitglied im Prüfungsausschuss des Instituts für Maschinenbau
- Mitglied in der Kommission für IT- und Mediendienste
Projekte
- Topologische Resonanzen in quantisierten Netzwerken
- Singularitäten in der Zeitverzögerung zweidimensionaler Streusysteme
Veröffentlichungen
- Differences between Robin and Neumann eigenvalues on metric graphs. R. Band, H. Schanz and G. Sofer.
arxiv.org/abs/2212.12531 - The statistics of spectral shifts due to finite rank perturbations. B. Dietz, H. Schanz, U. Smilansky and H. Weidenmüller.
J. Phys. A 54, 015203 (2020) - Edge switching transformations of quantum graphs – a scattering approach. H. Schanz and U.Smilansky.
Algebra i Analiz 30, 273 (2018) - Delay-time distribution in the scattering of time-narrow wave packets (II) — quantum graphs. U. Smilansky and H. Schanz.
J. Phys. A 51, 075302 (2018) - Edge switching transformations of quantum graphs. M. Aizenman, H. Schanz, U. Smilansky and S. Warzel.
Acta Physica Polonica A 132, 1699 (2017) - Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers. H. Li, S. Suwunnarat, R. Fleischmann, H. Schanz and T. Kottos.
Phys. Rev. Lett. 118, 044101 (2017) - Topological Resonances in Scattering on Networks (Graphs). S. Gnutzmann, H. Schanz and U. Smilansky.
Phys. Rev. Lett. 110, 094101 (2013) - Partial Weyl Law for Billiards. A. Bäcker, R. Ketzmerick, S. Löck and H. Schanz.
Europhys. Lett. 94, 30004 (2011) - Self-pulsed electron transmission through a finite waveguide in a transversal magnetic field. M. Prusty and H. Schanz.
Phys. Rev. Lett. 98 (2007) 176804. - Rate of energy absorption by a closed ballistic ring. D. Cohen, T. Kottos and H. Schanz.
J. Phys. A 39 (2006) 11755. - Signature of directed chaos in the conductance of a nanowire. M. Prusty and H. Schanz.
Phys. Rev. Lett. 96 (2006) 130601. - Wave packet dynamics and chaotic eigenstates. H. Schanz in H. Malchow, T. Pöschel and L. Schimannsky-Geier (Eds.).
Irreversible Prozesse und Selbstorganisation, Logos, Berlin (2006). - A relation between bond-scattering matrix and number counting function for quantum graphs. H. Schanz in G. Berkolaiko et al. (Eds.).
Quantum Graphs and Their Applications, Contemporary Mathematics 415, AMS (2006). - Directed chaos in a billiard chain with transversal magnetic field. H. Schanz and M. Prusty.
J. Phys. A 38 (2005) 10085. - Phase-space correlations of chaotic eigenstates. H. Schanz.
Phys. Rev. Lett. 94 (2005) 134101. - Quantum decay of an open chaotic system: a semiclassical approach. M. Puhlmann, H. Schanz, T. Kottos and T. Geisel.
Europhys. Lett. 69 (2005) 313. - Directed Chaotic Transport in Hamiltonian Ratchets. H. Schanz, T. Dittrich and R. Ketzmerick.
Phys. Rev. E 71 (2005) 026228. - Quantum pumping: The charge transported due to a translation of a scatterer. D. Cohen, T. Kottos and H. Schanz.
Phys. Rev. E 71 (2005) 035202(R). - Hamiltonsche Ratschen: Antrieb durch Chaos. H. Schanz.
Beitrag zum Jahrbuch 2004 der Max-Planck-Gesellschaft. - Quantum chaos: from minimal models to universality. H. Schanz.
Habilitationsschrift (2004). - Statistical properties of resonance widths for open quantum graphs. T. Kottos and H. Schanz.
Waves in Random Media 14 (2004) S91. - Shot noise in chaotic cavities from action correlations. H. Schanz, M. Puhlmann and T. Geisel.
Phys. Rev. Lett. 91 (2003) 134101. - Scars on quantum networks ignore the Lyapunov exponent. H. Schanz and T. Kottos.
Phys. Rev. Lett. 90 (2003) 234101. - Reaction matrix for Dirichlet billiards with attached waveguides. H. Schanz.
Physica E 18 (2003) 429. - Form factor for a family of quantum graphs: an expansion to third order. G. Berkolaiko, H. Schanz and R. S. Whitney.
J. Phys. A 36 (2003) 8373. - Eigenstates ignoring regular and chaotic phase-space structures. L. Hufnagel, R. Ketzmerick, M. F. Otto and H. Schanz.
Phys. Rev. Lett. 89 (2002) 154101. - Leading off-diagonal correction to the form factor of large graphs. G. Berkolaiko, H. Schanz and R. S. Whitney.
Phys. Rev. Lett. 88 (2002) 104101. - Combinatorial identities from the spectral theory of quantum graphs. H. Schanz and U. Smilansky.
The Electronic Journal of Combinatorics 8 (2001) R16. - Classical and quantum Hamiltonian ratchets. H. Schanz, M. F. Otto, R. Ketzmerick and T. Dittrich.
Phys. Rev. Lett. 87 (2001) 070601. - Effective coupling for open billiards. K. Pichugin, H. Schanz and P. Seba.
Phys. Rev. E 64 (2001) 056227. - Quantum graphs: a model for quantum chaos. T. Kottos and H. Schanz.
Physica E 9 (2001) 523. - Spectral signatures of chaotic diffusion in systems with and without spatial order. T. Dittrich, B. Mehlig and H. Schanz.
Physica E 9 (2001) 494. - Spectral statistics for quantum graphs: Periodic orbits and combinatorics. H. Schanz and U. Smilansky.
Phil. Mag. B 80 (2000) 1999. - Periodic-orbit theory of Anderson localization on graphs. H. Schanz and U. Smilansky.
Phys. Rev. Lett. 84 (2000) 1427. - Classical and quantum transport in deterministic Hamiltonian ratchets. T. Dittrich, R. Ketzmerick, M. F. Otto and H. Schanz.
Ann. Phys.-Berlin 9 (2000) 755. - Spectral statistics in chaotic systems with two identical, connected cells. T. Dittrich, G. Koboldt, B. Mehlig and H. Schanz.
J. Phys. A 32 (1999) 6791. - Spectral correlations in systems undergoing a transition from periodicity to disorder. T. Dittrich, B. Mehlig, H. Schanz, U. Smilansky, P. Pollner and G. Vattay.
Phys. Rev. E 59 (1999) 6541. - Excitonic-vibronic coupled dimer: Separatrix structure, regular and chaotic behavior of the semiclassical dynamics versus full-quantum evolution.
B. Esser and H. Schanz.
J. Lumin., 76-77 (1998) 530. - Signature of chaotic diffusion in band spectra.
T. Dittrich, B. Mehlig, H. Schanz and U. Smilansky.
Phys. Rev. E 57 (1998) 359. - Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system.
H. Schanz and B. Esser.
Phys. Rev. A 55 (1997) 3375. - Transfer and decay of an exciton coupled to vibrations in a dimer.
H. Schanz, I. Barvik and B. Esser.
Phys. Rev. B 55 (1997) 11308. - Penumbra diffraction in the semiclassical quantization of concave billiards.
H. Primack, H. Schanz, U. Smilansky and I. Ussishkin.
J. Phys. A 30 (1997) 6693. - Universal spectral properties of spatially periodic quantum systems with chaotic classical dynamics.
T. Dittrich, B. Mehlig, H. Schanz and U. Smilansky.
Chaos Solitons & Fractals 8 (1997) 1205. - Investigation of Two Quantum Chaotic Systems.
H. Schanz.
PhD thesis, Humboldt Universität Berlin, 1996. - Nonadiabatic couplings and incipience of quantum chaos.
H. Schanz and B. Esser.
Z. Phys. B 101 (1996) 299. - Penumbra diffraction in the quantization of dispersing billiards.
H. Primack, H. Schanz, U. Smilansky and I. Ussishkin.
Phys. Rev. Lett. 76 (1996) 1615. - Nonlinear properties of energy transfer in molecular aggregates coupled to a vibrational environment.
B. Esser and H. Schanz.
In J. A. Freund, editor, Dynamik, Evolution, Strukturen. Verlag Dr. Köster, Berlin, 1996. - On finding the periodic orbits of the Sinai billiard.
H. Schanz.
In J. A. Freund, editor, Dynamik, Evolution, Strukturen. Verlag Dr. Köster, Berlin, 1996. - Quantization of Sinai's billiard - a scattering approach.
H. Schanz and U. Smilansky.
Chaos, Solitons & Fractals 5 (1995) 1289. - Semiclassical quantization of billiards with mixed boundary conditions.
M. Sieber, H. Primack, U. Smilansky, I. Ussishkin and H. Schanz.
J. Phys. A 28 (1995) 5041. - Excitonic-vibronic coupled dimers - a dynamic approach.
B. Esser and H. Schanz.
Z. Phys. B 96 (1995) 553. - Nonlinearity and trapping in excitation transfer - dimers and trimers.
I. Barvik, B. Esser and H. Schanz.
Phys. Rev. B 52 (1995) 9377. - Regular and chaotic dynamics in systems with excitonic-vibronic coupling.
B. Esser and H. Schanz.
Chaos Solitons & Fractals 4 (1994) 2067. - Irreguläre Streuung an einem Cluster nichtüberlappender Potentiale.
H. Schanz.
Diploma thesis, Technische Universität Dresden, 1992. - Statistical properties of resonances in quantum irregular scattering.
W. John, B. Milek, H. Schanz and P. Seba.
Phys. Rev. Lett. 67 (1991) 1949.
Werdegang
- seit 04/2009
Professor für Informatik und Physik am Institut für Maschinenbau der Hochschule Magdeburg-Stendal - 11/2006-03/2009
Consultant im Bereich Finanzmathematik, d-fine GmbH, Frankfurt am Main - 10/1998-10/2006 wissenschaftlicher Assistent am Institut für nichtlineare Dynamik der Universität Göttingen; Forschung zum Thema Wellenchaos in komplexen Systemen am Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen (Habilitation in Physik am 15. 11. 2004)
- 12/1996-09/1998
wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Physik komplexer Systeme, Dresden - 10/1996-11/1996
Forschungsaufenthalt am Weizmann Institute of Science, Rehovot (Israel) - 03/1993-09/1996
Doktorand an der Humboldt-Universität Berlin (Promotion in theoretischer Physik am 13. 12. 1996) - 11/1992-02/1993
Forschungsaufenthalt am Weizmann Institute of Science, Rehovot (Israel) - 04/1988-09/1992 Physikstudium an der Technischen Universität Dresden
(Diplom in Physik am 21. 9. 1992).
Kontakt

Prof. Dr. rer. nat. habil. Holger Schanz
Praktische Informatik, Physik
Tel.: (0391) 886 43 17
Fax: (0391) 886 41 23
E-Mail: holger.schanz@h2.de
Besucheradresse: Haus 10, Raum 2.09